Access to Royal Observatory of Belgium node *****

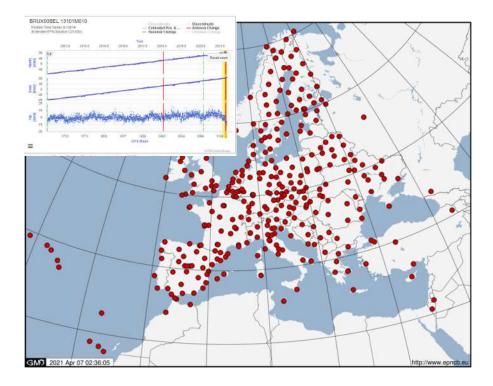
WP7: Access to PITHIA-NRF facilities

Description of the infrastructure:

https://www.epncb.oma.be/

ROB hosts the Central Bureau of the EUREF Permanent GNSS Network (EPN) and performs the day-to-day management of the network (~360 stations).

The EUREF Permanent GNSS Network consists of a network of continuously operating GNSS (Global Navigation Satellite Systems, such as GPS, GLONASS, Galileo, Beidou, ...) reference stations.

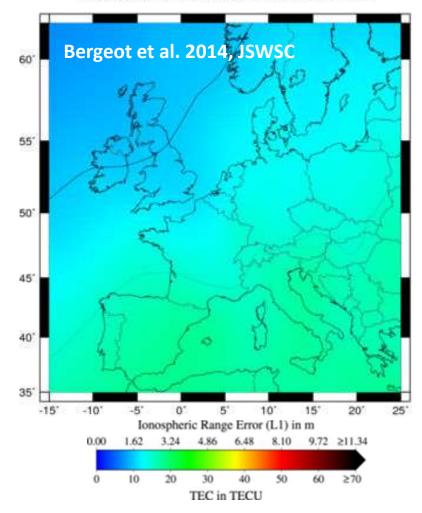

Data centres providing access to the station data.

Analysis centres that analyze the GNSS data,

Product centres or coordinators that generate the EPN products

Central Bureau that is responsible for the daily monitoring and management of the EPN.

Use of this data base to retrieve ionospheric TEC using the ROB-IONO software



Access to Royal Observatory of Belgium node ****** 🤁

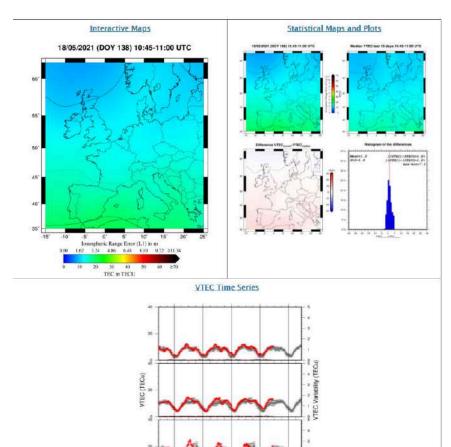
WP7: Access to PITHIA-NRF facilities

12/05/2021 (DOY 132) 08:45-09:00 UTC

Products and models:

Since 2011, the ROB provides real-time ionospheric vTEC maps over Central Europe. Based on ~200 stations. The main products are 0.5°x0.5° grids of vTEC and vTEC variability available every 15 min with a latency of ~3 min. These maps can be consulted on a web interface (www.gnss.be) or downloaded in the IONEX format (ftp://gnss.oma.be). Post processing available since 1998.

Well adapted for disturbed periods.

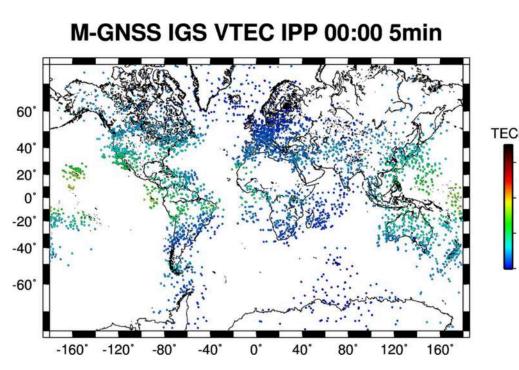

Also provided the Differential Code Biases of the GNSS stations.

Less than 10Mb/day

Access to Royal Observatory of Belgium node ******

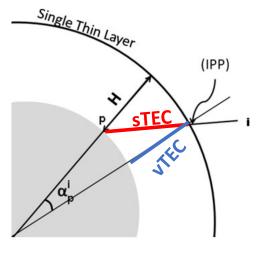
WP7: Access to PITHIA-NRF facilities

Re-rutes alternite DOY



Royal Observatory of Belgium GNSS Research Group		
ABOUT	IONOSPHERIC EVENTS	
Who we are Projects	Contect tono@ymss.be	
RESEARCHIPROB	2021	
Antarctica	2021-03-01 : Ionospheric activity due to Coronal Mass Ejection (more have)	
Innosphere	2020	
Time Transfer	• 2020-04-20 : lonospheric activity due to geomagnetic activity (more here)	
Atomium	2020-04-06 ; CPS signal power change (<u>more here</u>) 2020-02-14 : CPS signal power change (<u>more here</u>)	
DATA AND PRODUCTS	2019	
EPN Central Bureau	2019 06-20 ; GPS signal power change (more here)	
RCB Network		
lonosphere & Space Weather	2018	
Interactive Maps	 2018-04-20 : Ionospheric activity due to Coronal Hole (more here) 	
Statistical Maps VTBC Time Series	2018-04-13 : GPS signal power change (more here)	
SRB Warnings	2017	
	2017-09-07 : Ionospheric activity due to Solar Flare (more hera)	
TUTORIALS	 2017-09-07 : Space weather event due to Solar Radio Burst (more here) 	
GPS, GLONASS, GALILEO,	2017-09-05 : Space weather event due to Solar Radio Burst (more here) 2017-08-31 : lonospheric activity due to Geomagnetic Activity (more here)	
How GNSS Works	 2017-07-16 : Ionospheric activity due to CME (more here) 	
Positioning & Timing		
GNSS Networks	2016	
Coordinate Systems	 2016-10-13 : Ionospheric activity due to CME (more here) 2016-09-25 : Ionospheric activity due to the sign inversion of the IMEBz component (more here) 	
Atmosphere	 2016-09-19 : Ionospheric activity (more here) 	
tonosphere Troposphere	Z016-01-20 : lonospheric activity due to CME (more here)	
troposphere	2015	
	2015-11-04 : Space weather event due to Solar Radio Burst (more here)	
	 2015-11-04 : Space weather event due to Solar Kadio Burst (<u>more here</u>) 2015-11-03 : lonospheric activity due to high-speed stream of solar wind (<u>more here</u>) 	
LOGIN	2015-06-23 : Ionospheric activity due to CME (more here)	
	 2015-03-17 : lonospheric activity due to geomagnetic storm (more here) 2019-03-01 : lonospheric activity due to geomagnetic activity (more here) 	
	 2015-03-01 : Ionospheric activity due to geomagnetic activity (more here) 2015-02-23 : Ionospheric activity due to geomagnetic activity (more here) 	
	 2015-01-07 : Ionospheric activity due to geomagnetic storm (more hare) 	

Access to Royal Observatory of Belgium node ******


WP7: Access to PITHIA-NRF facilities

Products and models:

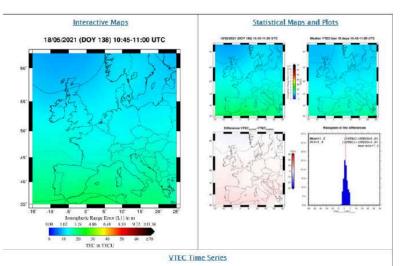
Since 2021, the ROB provide daily (less 1 day latency) vTEC estimation at lonospheric Pierce Point from a selection of IGS stations (#220). The GNSS output consist in TECu (GPS+GLONASS+GALILEO) sTEC and vTEC, as 60 well as the DCBs for the different signal 40 combinations every 30s.

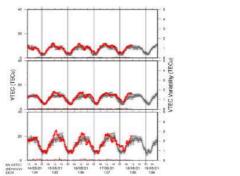
20 More than 2Gb/day

Main Challenges

- ➢ Go for multi-GNSS in NRT for EU maps
- Transfer all the ASCII files in a database in NRT (EU) or within 1 day/delay (GLOBAL)
- ➢ Go for full IGS station available (~500)
- On demand runs of ROB-IONO (e-science center ?) to retrieve the TEC information (slant and vertical) and DCBs for a submitted GNSS file (RINEX).
- > Any needs for other planets ? (e.g. Mars)
- > 2.5 years IT-engineer in the frame of PITHIA started in 2022

Contact persons : Jean-Marie Chevalier jmchev@oma.beNicolas Bergeotnicolas.bergeot@oma.be




Access to Royal Observatory of Belgium node ****** 🔁

WP7: Access to PITHIA-NRF facilities

www.gnss.be

NRT CEU

Combination of TEC products

Regional for ROB-DLR-INGV Disturbed periods. Common campaigns with digisondes.

Global : for the biggest/greatest teams (DLR-INGV-UPC)

ftp://gnss.oma.be

🚍 ROBR 132J00.2 11 🔝 |

1	1.0 IONOSPHERE MAPS GPS	IONEX VERSION / TYPE		
2	ROB NRT VIEC MAPS ROB/SICE 12/05/2021 09:20	OUTC PGM / RUN BY / DATE		
3	ROB's RAPID IONOSPHERIC MAPS FOR 132 2021, 09:00UTC	COMMENT		
4	Regional ionospheric maps over Europe are generated ever			
5	15 minutes in near-real time at the Royal Observatory of			
6	Belgium (ROB) using the real time GPS observations from			
7	more than 100 sites of the EUREF Permanent Network (EPN)			
8	The Vertical Total Electron Content (VTEC) is modeled in			
10	geographic coordinate system. Products such as orbits an (resp.) satellite P1-P2 and C1-P1 Differential Code Bias			
11	(DCB) are taken from the International GNSS Service (IG			
12	and (resp.) from the Center for Orbit Determination in			
13	Europe (CODE). The ground receiver DCB are estimated day			
14	at ROB using rapid Global Ionospheric Maps (GIM) product			
15	of CODE as a priori information. To produce the VTEC may			
16	the Slant Total Electron Content (STEC) of each satelli	te- DESCRIPTION		
17	receiver pair are estimated and projected in VTEC at the	 DESCRIPTION 		
18	Ionospheric Piercing Points (IPP) using an ionospheric			
19	single thin layer shell approximation at 450km. The VTECs DESCRIPTION			
20	at the IPPs are then interpolated on a grid of 0.5°x0.5			
21	using a thin plate spline interpolation. The variability			
22	of the VTEC during the 15 min time span is also included in the "RMS" part of this file. RMS is of the order of			
23	2-6 TECu depending on the location.	DESCRIPTION		
25	Contact address: iono@gnss.be, nicolas.bergeot@oma.be o:			
26	jean-marie.chevalier@oma.be	DESCRIPTION		
27	Web site : www.gnss.be	DESCRIPTION		
28	2021 5 12 9 0 0	EFOCH OF FIRST MAP		
29	2021 5 12 9 0 0	EPOCH OF LAST MAP		
30	900	INTERVAL		
31	1	# OF MAPS IN FILE		
32	COSZ	MAPPING FUNCTION		
33	15.0	ELEVATION CUTOFF		
34	GPS OBSERVATION FROM THE REAL-TIME EPN NETWORK	OBSERVABLES USED		
35	37	# OF STATIONS		
36	6371.0	<pre># OF SATELLITES BASE RADIUS</pre>		
37	2	MAP DIMENSION		
39	450.0 450.0 0.0	HGT1 / HGT2 / DHGT		
40	35.0 62.0 0.5	LAT1 / LAT2 / DLAT		
41	-15.0 25.0 0.5	LON1 / LON2 / DLON		
42	-1	EXPONENT		
43	TEC/RMS values in 0.1 TECU	COMMENT		
44	List of stations:	COMMENT		
45	autl, brmf, bscn, bute, cfrm, clib, cpar, crak, ctab, d			
46	grac, gras, hert, igeo, ijmu, jos2, kral, kraw, kuns, la			
48	<pre>mars, osls, pat0, penc, riga, scoa, srjv, stas, tori, t: tubo, vars, vfch, vlis, wroc, sim2, souf</pre>	COMMENT		
49	DIFFERENTIAL CODE BIASES	START OF AUX DATA		
50	DIFFERENTIAL CODE BIASES	END OF AUX DATA		
51				
52	1	START OF TEC MAP		
53	2021 5 12 9 0 0	EPOCH OF CURRENT MAP		
54	35.0 -15.0 25.0 0.5 450.0	LAT/LON1/LON2/DLON/H		
55	168 169 170 172 173 174 175 176 178 179 180			
56		186 185 185 184 183		
57	182 181 180 179 178 176 175 174 172 171 170			
58		171 171 170 170 169		
59	169 169 169 169 170 170 171 172 173 174 175	175 176 176 176 176		
60	176			
61 62	35.5 -15.0 25.0 0.5 450.0 167 168 169 170 172 173 174 175 177 178 179	LAT/LON1/LON2/DLON/H		
63	167 168 169 170 172 173 174 175 177 178 179 184 185 185 186 186 186 186 186 186 186 186 186			
64	182 181 180 179 178 177 175 174 172 171 170			

Access to Royal Observatory of Belgium node ****** 🤁

WP7: Access to PITHIA-NRF facilities

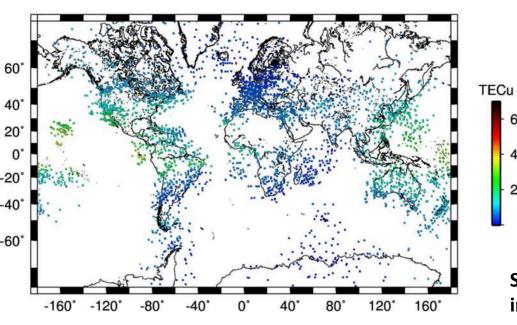
POST GLOB

60

40

20

ROB Local serveur

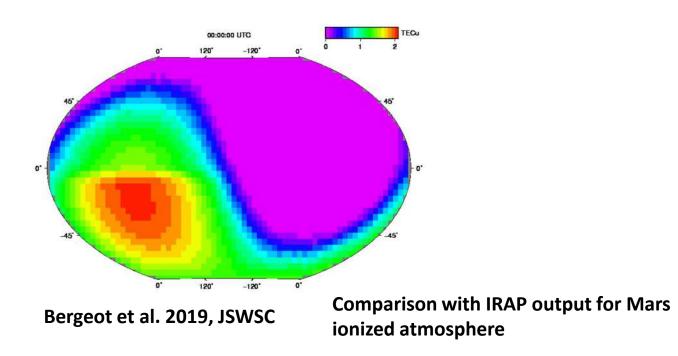

NB1

Long Lat sTEC vTEC epoch Sat Station Freq Comb Elev Azi DCB Sta Sat **TECu TECu** ns -73.11 23.42 67.05 26.33 2024 E01 ABMF00GLP C1C-C5Q- 10.07 305.54 66.88 3.51 -0.204 -73.05 23.43 67.03 26.35 2025 E01 ABMF00GLP C1C-C5Q- 10.13 305.70 66.85 3.51 -0.204 -73.00 23.44 67.03 26.38 2026 E01 ABMF00GLP C1C-C5Q- 10.20 305.86 66.83 3.51 -0.204 -72.94 23.45 67.01 26.40 2027 E01 ABMF00GLP C1C-C5Q- 10.27 306.02 66.80 3.51 -0.204 -72.88 23.46 66.96 26.41 2028 E01 ABMF00GLP C1C-C5Q- 10.33 306.17 66.77 3.51 -0.204 -72.72 23.49 66.95 26.50 2031 E01 ABMF00GLP C1C-C5Q- 10.53 306.64 66.68 3.51 -0.204 -72.66 23.50 66.95 26.53 2032 E01 ABMF00GLP C1C-C5Q- 10.60 306.80 66.66 3.51 -0.204 -72.61 23.51 66.92 26.55 2033 E01 ABMF00GLP C1C-C5Q- 10.67 306.96 66.63 3.51 -0.204 -72.49 23.52 66.84 26.58 2035 E01 ABMF00GLP C1C-C5Q- 10.80 307.27 66.57 3.51 -0.204 -72.44 23.53 66.73 26.57 2036 E01 ABMF00GLP C1C-C5Q- 10.87 307.42 66.54 3.51 -0.204

ROB Local serveur

Study of vTEC/sTCE for TIDs, gravity waves With other instrumentations.

M-GNSS IGS VTEC IPP 00:00 5min



https://lara.oma.be/marsat mo/iono/momo.html

https://lara.oma.be/marsat mo/iono/momo.html

subroutine momo(sza, lat, ls, sflux, tec)

implicit none Empirical Model of the Mars Ionospheric Total Electron Content based on Mars Express MARSIS data

INPUT

- sza Solar Zenith Angle (in decimal degrees) lat Latitude (in decimal degrees)
- Is Solar longitude (in decimal degrees)
- sflux F10.7P solar flux at Mars Level (in SFU).
- available in the file Mars-sflux.dat
- based on F10.7 Pentitorn radio telescope data (Tapping, 2013) and SPICE/NAIF software (Acton 1998; Acton et al. 2018) to retrieve the Sun-Mars distance

OUTPUT

- tec vertical Total Electron Content (in TECu with 1 TECu = 10^16 e^{-}.m^{-2})
- Nicolas Bergeot, Royal Observatory of Belgium
- nicolas.bergeot@oma.be https://lara.oma.be/marsatmo/iono/momo.html
- Citation : Bergeot et al. 2019.
- MoMo: a new empirical model of the Mars ionospheric total electron content based on Mars Express MARSIS data J. Space Weather Space Clim.

double precision, intent(in) :: sza, lat, ls, sflux double precision, intent(out):: tec

double precision :: sza_rad,szaa double precision :: PI=DACOS(-1.D0)

- C Mars radius in km double precision :: R=3392.D0
- C Altitude of the ionospheric thin shell laver (km)
- double precision :: z=140.D0 C Atmospheric scale height in km
- double precision :: H=15.D0

double precision :: Xp. Y double precision :: dd double precision :: coskhi double precision :: a,b,c,d,f,g data a/1.0606963D0/, b/0.55643831D0/, c/1.0619896D0/ data d/1.7245609D0/, f/0.56498823D0/, g/0.06651874D0/

double precision :: ALPHA, BETA1, BETA2 double precision, dimension(3) :: NH1, NH2, SH1, SH2 data NH1/3.28475904322301D-2, 0.26244944203458331D0, & 1.56459124437402231D-2/ data NH2/3 00401658206301D-2 0 29501769621207252D0 & 1.43861022956577878D-2/ data SH1/2.47354060512544D-2, 0.55213629829561484D0, & 9.64344891617308075D-3/ data SH2/0.0357746382136027D0 , -2.21633284990438995D-2

& 2.28729785507327255D-2/ C Symmetry Sunset/Sunrise

tec=ALPHA+(BETA1+BETA2*sflux)/sqrt(coskhi)