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@ Introduction

© Ionosonde
@ Working of an ionosonde
@ lonosonde derived data
@ Disturbed ionograms

© Other ground-based radio techniques
@ Doppler sounding systems
@ Incoherent scatter radars

@ GNSS for ionospheric observations

© Monitoring the magnetosphere
@ Ground based magnetometers
@ WHisPeR/Cluster measurements
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How to observe the ionosphere, thermosphere, plasmasphere?
This region is difficult to access compared to the lower atmosphere.

@ insitu (sounding rockets, satellites): very good, but limited in coverage
and expensive

© Remote sensing;:
@ Trans-ionospheric signals (GNSS, radio telescopes,...)
@ Reflection from the ionosphere (ionosonde, Doppler sounder,...)
@ Incoherent scatter radar
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From the ionosonde, we can obtain (automatically, in real-time) most
ionospheric weather parameters.
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In order to monitor the ionosphere globally, data from many observatories
is needed.
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Giro is currently the most complete repository of ionosonde data, but there
are others which may have additional observatories.
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Combining real-time derived
characteristics from a
world-wide network on
ionosondes allows modelling
the global ionosphere.

But: the availability of
real-time data is sparse, and
not uniformly covering all
regions.
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Example of expanding auroral oval during geomagnetic disturbances.
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The auroral oval extends here to between Juliusruh (55°N, left) and Dourbes
(50°N, right). Spread-F in ionograms is associated with scintillation in GNSS
signals.
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The principle of a continuous Doppler sounding system (CDSS) is similar to
the ionosonde, but using forward scattering.

TRANSMITTER RECEIVER

Each transmitter/receiver link operates continuously on a single frequency.
Many links can be combined.
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CDSS observations

Continuous-wave sounding allows detection of ionospheric disturbances at
shorter time resolution.
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However: only a single frequency is sounded, so no complete electron
density profile can be obtained. Instead, only a measurement at a single
height is obtained.
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Multi-point CDSS
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The height of the reflection still has to be determined from other
observations, e.g. from a nearby ionosonde.

T. Verhulst (RMI/STCE) Instrumentation



Radio waves below f, are reflected by collective movement of electrons.
Higher frequencies are still scattered (incoherently) by individual electrons,
with effective radar cross-section
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ISR observations

RTI: 07 Februsry . 2005

Plasma Bubble
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A major advantage of ISRs is that they can observe above the height of

highest electron density.
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Passive monitoring of trans-ionospheric signals provides observations
complementary to active radio soundings.

@ Advantage: provides data also above the ionospheric peak.
@ Disadvantage: only provides information integrated along line-of-sight.

GNSS receivers are cheaper and smaller than active sounding instruments,
so there are denser networks of observatories.

In a similar way, radio telescopes and riometers can monitor the ionosphere
by tracking astronomical radio sources.
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Refractive index for radio signals in a magnetised plasma:
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Dense networks of GNSS receivers can be used to calculate detailed maps of

vTEC.

Histogram of the differences
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Scintillation of trans-ionospheric signals can provide information about
small-scale structuring.
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Very different physical processes can produce scintillation in GNSS signals.
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@ lonosondes: The standard for observing the bottom-side ionosphere.
Full electron density profile, but no observations of the top-side and
limited time-resolution. Rather expensive.

@ Doppler sounders: Cheap and relatively simple instrument. Ideal for
short time resolution, but only a single frequency (and therefore: a
single height) is observed.

@ GNSS receivers: Relatively cheap and easy to operate. Can be used in
dense networks, but only provides integrated measurements, not
height profile.

@ ISRs: Provide a lot of details, including about the topside ionosphere.
Very expensive to build and operate, so limited data coverage (in space
and time). The neutral thermosphere is in general more difficult to
observe than the ionosphere.
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The main part of the magnetic field is the Earth’s internal field, but the
short term variations are due to magnetospheric/plasmaspheric/ionospheric
currents.

Distribution of Dst observatories Distribution of Kp observatories Distribution of AE observatories

Various magnetic activity indices indicate currents in different regions.
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Cluster mission & WHISPER instrument

Cluster Il is a constellation comprising four identical satellites on (different)
elliptical, GEO-crossing orbits.

Each satellite carries instruments for measuring electron and ions in the
magnetosphere as well as E and B fields.

WHisPER (Waves of High frequency and Sounder for Probing of Electron
density by Relaxation) can be used to obtain electron density.

Transmitting antenn

Transmitting antenna
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The WHISPER instruments makes both passive recordings and active
soundings in the 2-80 kHz band; data is presented as a E field spectrogram.

Solar Wind sheath Cusp Plas|
—_—

Active [kHz]
¥ 5 8

From the observed plasma
frequency, the electron
density is obtained.

Various other resonances can
be observed; careful

“ It interpretation of the spectra

Natural [kHz]
3 3

e Pt is needed.
F0 ot o N NS
s e e
20070218 I ! ! ! 2007219 ! ! !
10:00:00 13:00:00 16:00:00 19:00:00 22:00:00 01:00:00 04:00:00 06:00:00 10:00:00
Xrey 15.37 13.73 11.66 9.17 6.19 2.69 -1.23 -2.82 3.16
Zpey -11.56 1197 12.02 1162 -10.60 8.65 5.02 176 425

T. Verhulst (RMI/STCE) Instrumentation PITHIA/T-FORS School 2024-02-06 26 /27



The end!

Questions?
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