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Outline

* Influence of the Sun on Earth: Space Weather!

(definition, effects & socio-economic impact...)

 The magnetosphere of the Earth

« Solar wind - magnetosphere interactions

& space weather prediction models:
data-driven models with predictive capabilities, <=
enabling forecasting and mitigation

o |t) Jens Pomoell




The solar wind

« Stream of particles leaving the Sun
(~10° kg/s)

* Fills the entire solar system
(heliosphere)

Processed solar wind images (comoving-frame averaging)

* “Low” energy particles (0.5 - 10 keV) of STEREO A (COR?2).

+ Slow and fast wind: 300 — 750* km/s eSO
(also different chemical compaosition)

« Drags out the solar magnetic field:
* Interplanetary magnetic field (IMF)
« Spiral structure due to solar rotation Ecliptic view

Source: N. Wijsen



Credit: NASA'
Goddard :

Solar storms

Coronal mass ejections (CMEs)

* Enormous clouds of hot plasma
launched into space

* Propagation speed: typ. 450 km/s
but range from 350 to 3000* km/s

(> 10 million km/hour!)
Solar Flares

*Intense release of high-energy
radiation (EUV, X-rays, Gamma-rays)

* Accelerate particles!

Credit: Wijsen (2020) Sg;ﬁfaf,‘;;[?jgﬂig?fjca' KU LEUVEN




Solar energetic particles (SEPs)

« CMEs can act as powerful

Interplanetary particle accelerators too!
Magnetic Fietd

* Electrons, protons, ions

Coronal

Mass * Energies: keV - GeV

Ejection |
”" %{{ 1 MeV proton = 14 000 km/s
- / 1 GeV proton = 262 000 km/s

: Much more energetic than the solar wind!
Energetic

Protons

and lons
%({ » Charged particles: spiral
around IMF

Credit: NASA

Credit: Wijsen (2020) gg’;ﬁ;ﬁ;{?ggﬂigggcm | KU LEUVEN



‘Space Weather’

cf. USA NSWP
Strateqic Plan:

‘Space Weather refers to conditions on the sun and in the solar wind, magnetosphere, ionosphere, and
thermosphere that can influence the performance and reliability of space-borne and ground-based
technological systems and can endanger human life or health.”

Centre for mathematical
Plasma Astrophysics | KU LEUVEN



Solar flares and CMEs

When a CME Is ejected In the
direction of the Earth, we see a

so-called ‘halo CME’
(about 10% of all the CMEs, more than
1 per week during solar maximum)

(halo) CMEs:

Ve = 100 - 3000 km/s, typ. 450 km/s
Mass = 1013 - 1016 g

Energy = 1027 - 1033 erg

(1st: OSO7 ('71) see Bruecker et al. '72) 1999}03-"01.00318 NG

Centre for mathematical
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Geomagnetic storms

<%

-

These cause a lot of damage!!!
N

Simulation of SW interaction
with magnetosphere

Centre for mathematical
Plasma Astrophysics
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Credit: NASA Image courtesy of Johnny'Henriksen/Spaceweather.com
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http://spaceweather.com/

Dipole magnetic field in a wind

The magnetic field of the Earth is essentially a dipole.
The interaction of the solar wind with it, is ‘complicated’.

inner far
field region

outer far
field region

<
<
<

Pure Dipole
20 T T T T T

Ganymede, located in the

inner foot

magnetosphere of Jupiter, possesses \ [en Jouter foot
o | an internal dipole field and is Yoy (‘@ ( Yov oYy
embedded in a sub-Alfvénic plasma / ‘
o T flow (coming from the left on the —>
sketch), but also subsonic in contrast \
ol i to the situation at Earth. T 7 T 1177

Top: Sketch of Ganymede and its

B | 0 | 20 magnetic field lines (thin lines), where
the external magnetic field and the E
Field lines of a magnetic dipole in a dipole moment are parallel to each gt
plane containing the dipole axis. other. The boundary between the inner € 1sf
From Russel (2000). part of the Alfvén wings and the outer = 120f
part is represented by bold lines. I
Bottom:,PIas_ma velocity profile across T e
the Alfvén WINg. From Chané et al. (2012) Alfvén wing Alfvén wing Alfvén wing

KU LEUVEN




An artist's rendering of the structure
of a magnetosphere:

1) Bow shock:

 The solar wind at the orbit of the Earth
Is usually strongly super-Alfvénic

and super-fast, causing a bow-shock
to be formed upstream of the Earth to
deviate the solar wind around it

« outermost layer of the magnetosphere

* due to interactions with the bow shock,
the solar wind plasma becomes
anisotropic which leads to various
plasma instabilities upstream and
downstream of the bow shock

Credit: https://en.wikipedia.org/wiki/Magnetosphere#



The magnetosphere ..

2) Magnetosheath:

* between the bow shock and the
magnetopause

 contains mainly shocked solar wind
( + a little magnetospheric plasma)

« exhibits high particle energy flux

* the direction and magnitude of the
magnetic field varies erratically

Credit: https://en.wikipedia.org/wiki/Magnetosphere#



The magnetosphere ..

3) Magnetopause:

» where pressure from
magnetospheric field is balanced by
that from solar wind

» where the shocked solar wind from
the magnetosheath meets the
magnetospheric field and plasma

* structure varies depending upon
the Mach number, plasma beta, and
the magnetic field

* size and shape vary as the
dynamic pressure from the solar
wind fluctuates

Credit: https://en.wikipedia.org/wiki/Magnetosphere#



The magnetosphere .

4) Magnetosphere: compressed
magnetic field, and, opposite to it the
Magnetotail, extending far beyond
the Earth

5) Northern tail lobe where the
magnetic field lines point towards
Earth

6) Southern tail lobe where the
magnetic field lines point away from
Earth

The tail lobes are separated by a
plasma sheet (weak B, higher density)

Credit: https://en.wikipedia.org/wiki/Magnetosphere#



The magnetosphere .

7) Plasmasphere, or inner
magnetosphere

« consists of low-energy (cool) plasma
IS located above the ionosphere

Its outer boundary is known as the
plasmapause (defined by an order
of magnitude drop in density)

particle motion is determined entirely
by the geomagnetic field

co-rotates with the Earth

Credit: https://en.wikipedia.org/wiki/Magnetosphere#



Magnetic reconnection

Credit: https://en.wikipedia.org/wiki/Magnetic_reconnection

* Rearranges magnetic topology and converts
magnetic energy to kinetic energy, thermal energy,
and particle acceleration.

* involves plasma flows at a substantial fraction of
the Alfvéen wave speed ( = fundamental speed for
mechanical information flow in a magnetized
plasma).

¢ magnetic reconnection is a generic process, the
concept of which was discovered in parallel by solar
physicists and researchers studying the
Interaction between the solar wind and
magnetized planets.

This reflects the bidirectional nature of

reconnection: it can _elther disconnect formerly A cross-section through four magnetic domains: two
connected magnetic fields (cf. solar flare/CME) or separatrices divide space into four magnetic. Field lines and
(re-)connect formerly disconnected magnetic fields, plasma flow inward from above and below the central separator,
like magnetic fields of the solar wind and Earth. reconnect, and spring outward along the current sheet.

Centre for mathematical |/
Plasma Astrophysics KU LEUVEN




Magnetosphere: dimensions

* On the dayside, B is significantly
compressed by the SW to £ 65,000 km

« Earth's bow shock is about 17 km thick and  (:
located about 90,000 km from Earth (x15Rg)

« Earth's magnetopause allows solar wind
particles to enter causing Kelvin—Helmholtz
Instabilities as the plasma travels along the
edge of the magnetosphere at a different
velocity from the magnetosphere

* This results in magnetic reconnection,
enabling solar wind particles to enter the
magnetosphere.

Magnetopause
current

« The magnetotail length exceeds 6,300,000
km is the primary source of the polar aurora.

[ Plasma sheet

Magnetotail
lobe

mantle

Plasma sheet
boundary layer

Field- allgned
current

)
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| ™
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diati

belt

Convecting plasma

Magnetopause
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Northward

Effect of IMF t Ty

Early 2D representations of reconnection _
between the magnetic fields (blue traces) of the |2l
solar wind and the Earth’s magnetosphere, as
first described by Dungey (1961, 1963).

Top: An instance of pure northward IMF,
showing magnetic reconnection at high Southward
latitudes just downstream of the Earth. i

Bottom: A pure southward IMF condition,
showing magnetic reconnection occurring at
null points (N) in the subsolar region and within  |se/aring
the magnetotail, with associated magnetic field :Q
motion and plasma inflow and outflow
(represented by black arrows).

Adapted from Russell (2000) by Trattner et al. (2021), courtesy of
Spinger Nature

Centre for mathematical A"

Plasma Astrophysics



Aurore and energetic particles

Artist impression of impulsive SEP event
Credit: NASA

21

Centre for mathematical
Plasma Astrophysics




Solar wind - magnetosphere interaction

Lesson learned (so far):

* The Earth’s magnetic field shields the planet and its atmosphere from the solar
wind.

* However, this magnetic shielding is not perfect. A fraction of the mass, energy,
and momentum from the solar wind can transfer to the magnetosphere and
lonosphere through processes that are often referred to as solar wind-
magnetosphere interactions

« Pulkkinen et al. (2023) performed 131 simulations of geomagnetic storms
using the UMICH SWMF and focusing on modeling the parameters that
are characterizing the condition of the magnetosphere like the
geomagnetic indices, which are directly related to solar wind drivers,
magnetopause locations, and the cross-polar cap potential.

Centre for mathematical gg KU LEUVEN

Plasma Astrophysics ’



Geomagnetic indices: Dst

« Disturbance storm time (Dst, Kyoto Dst) index, introduced by Sugiura [1963], gives
Information about the strength of the ring current that is caused by solar protons and
electrons and has a large effect on the electrodynamics of geomagnetic storms.

* The ring current around Earth produces a magnetic field that is directly opposite
Earth's magnetic field, i.e., if the difference between solar electrons and protons gets
higher, then Earth's magnetic field becomes weaker.

Y

. Polar cap
heyi t i d :
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Doumen & Maharana (2024)
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https://en.wikipedia.org/wiki/Earth_radius

Geomagnetic indices: K

e Introduced by Bartels [1939] to
guantify geomagnetic activity with
an integer in the range 0-9 with 1 =
calm and 5 or more = a geomagnetic
storm

» Derived from the largest fluctuations
(in nT, relative to a quiet day) of the
horizontal components of the
magnetic field of the Earth in 3h-
Intervals

Doumen & Maharana (2024)
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Auroral Electrojet (AE, AL, AO, AU) indices

 AE index Is a proxy of the response of the ionosphere to the substorms
which are guite stochastic and have high temporal variability. It is derived from
geomagnetic variations in the horizontal component observed at selected (10-
13) observatories along the auroral zone in the northern hemisphere.

AU and AL indices are, respectively, defined by the largest and the smallest
(normalized) values selected from all the stations. The symbols, AU and AL,
derive from the fact that these values form the upper and lower envelopes of
the superposed plots of all the data from these stations as functions of UT.

 The difference, AU - AL, defines the AE index, and the mean value of the AU
and AL, i.e. (AU+AL)/2, defines the AO index.

The term "AE indices" is usually used to represent these four indices (AU, AL, AE and AO).

Maharana et al. (2024) Centre for mathematical PRV ., i iven

Plasma Astrophysics ’



EUHFORIA

‘European heliospheric forecasting information asset’

Corona:
Semi-Empirical WSA model

=

PFSS |1
(1-2.6
0

SCSm
(2.3 Rsun -

J

MHD parameters (0.1 AU) using
empirical relations

Credit: Anwesha Maharana
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https://euhforia.com/

EUHFORIA — OpenGGCM coupling

Input time series at
L1

OMNI, ACE, WIND or
EUHFORIA

=)

OpenGGCM

=)

Magnetosphere + lonosphere + Thermosphere

model

Geomagnetic
indices

Dst and AE index

Flowchart demonstrating the coupling of OpenGGCM with EUHFORIA

Centre for mathematical

KU LEUVEN

Maharana et al. (2024)

Plasma Astrophysics



Geo-effectiveness

Characteristics and predicted geomagnetic indices of Event 1 (July
12, 2012). Using a spheromak CME.

Panels 1-3 show the plasma parameters — speed (v), proton number
density (np), and the magnetic field parameter — z-component of
magnetic field (Bz) as obtained from the Wind spacecraft in situ
observations (in black) and the EUHFORIA simulation of the event
based on Scolini et al. (2019) (in blue), respectively. The horizontal
blue line in Panel 3 corresponds to B, = 0.

Panels 4—7 show the geomagnetic indices — Dst index, AU index, AL
index, and AE index as measured in Earth’s magnetosphere and
ionosphere (in red), and as obtained from OpenGGCM simulations
using input from the OMNI database (in black) and EUHFORIA
simulation (in blue). The magenta and green vertical solid lines
depict the arrival of the CME shock and the beginning of the
magnetic cloud passage at Earth, respectively.

Maharana et al. (2024)
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Characteristics and predicted geomagnetic indices of Event 2
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Panels 1-3 show the plasma parameters — v, np, and Bz as
obtained from the Wind spacecraft in situ observations (in black)
and the EUHFORIA simulation of the event based on Scolini et al.
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(2020) (in blue), respectively. ~200

Panels 4-7 show the geomagnetic indices — Dst index, AU index, AL £ 800,

index, and AE index as measured in Earth’s magnetosphere and 2

ionosphere (in red), and as obtained from OpenGGCM simulations 00l

using input from the Wind spacecraft (in black) and EUHFORIA 0]

simulation (in blue). The magenta solid and dashed lines depict E_;:::

the arrival of two shocks (S1 and S2) associated with this event. = _mo§ ‘ fb —

The two green solid lines depict the boundary of the passage of —2400
the magnetic ejecta E1 at Earth and the dashed lines correspond 24001
to the boundary of E2 at Earth.
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FR CME models and empirical geo-effect models

3D visualization of the EUHFORIA simulation results of the CME that erupted on 12
July 2012 using the FRi3D model, evolving in the heliospheric domain of EUHFORIA.

(b)
z
Side view

FRi3D flux rope geometry.

30 Maharana et al. (2022): FRi3D model




Geo-effectiveness

Using a spheromak and FRi3D CME.

Comparison of the geoeffectiveness
predictions employing the empirical Dst
formalism of O’Brien and McPherron
(2000a,b) and the empirical Kp-index

formalism of Newell et al. (2007, 2008) with
observations. The empirical Dsﬁ; (panel 4) and

Kp index (panel 5) computed using the

measured Wind data (green dashed line), and
EUHFORIA simulated solar wind data using
the spheromak (in red solid line) and FRi3D (in

blue solid line) are compared with their

measured values. The solar wind parameters
(v; n,; B,) at Earth are additionally plotted to
show their correlation with the geomagnetic

indices. For example, B, and n,, strongly

influence Dst and Kp index respectively.

Maharana et al. (2022): FRi3D model
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Virtual SWE Modelling Centre

- An open end-to-end (Sun to Earth)
space weather modeling system,

- enabling to interactively run &
"couple" various space weather
models in an integrated tool,

- With the models located either
locally or geographically
distributed (# CCMC)

Basic set-up of federated service with
geographically distributed system elements

<='=| | KULEUVEN




EUHFORIA In the e-Science Centre

PITHIA Home  Scientific Metadata¥  Space Physics Ontology Provider Login/Sign up
e-Science Centre

Home > All Scientific Metadata > Data Collection-related Metadata > Data Collections > EUHFORIA: EUropean Heliospheric FORecasting Information Asset @ Help & Support

EUHFORIA: EUropean Heliospheric FORecasting I dentifier
Information Asset Local ID DataCollection_EUHFORIA

Namespace kul

Description ,
Version 2
EUHFORIA (EUropean Heliospheric FORecasting Information Asset) consists of two main parts: a semi-empirical coronal Created Tuesday 28th Feb. 2023,
model, the purpose of which is to determine the plasma environment of the solar wind at the location of the inner 01:30:00
boundary of the heliospheric module, and the heliospheric model, which provides the dynamics of the background solar )
) ) ) ] ) . ) ) Last Monday 24th April 2023,
wind with superposed CMEs into the inner heliosphere by numerical evolution of the MHD equations. EUHFORIA runs at Modified  18:56:00

the Virtual Space Weather Modeling Center (VSWMC) on the ESA Space Weather Network (ESA-SWE) website
(https://swe.ssa.esa.int). VSWMC is an interactive modeling system developed for space weather research from the Sun to
the Earth. It allows users to run different tools stand-alone or in combination with models that are locally or geographically

. Download
dispersed.
B DataCgllection EUHFORIAXmI
Interact
Interaction Method Description Data Format Link
Direct data download The ESA-SWE website requires an account to run. image/png Latest VSWMC at ESA-
Once received, go to the VSWMC webpage and text/plain SWE Landi.ngﬁge_
select: "NEW RUN". From the list of model chains (link opens in new tab)

that appear, you can choose those that contain


https://swe.ssa.esa.int/kul-cmpa-federated

EUHFORIA Corona
Provides MHD parameters at 0.1AU based on a PFSS/SCS
magnetogram extension and the semi-empirical WSA model.

EUHFORIA Heliosphere
Steady solar wind model based on magnetogram, using HEEQ
coordinates. CMEs can be superposed on this wind.

Model chains In the

Visualizer
Visualization of EUHFORIA-like output

For example: Geoeffect Dst

Simple model based on an empirical equation to determine the
/‘[ EUHFORIA Visualizer

Dst index form solar wind parameters at L1.
EUHFCORIA Corona —-[ EUHFORIA Heliosphere

"

Geoeffect Kp
Simple model based on an empirical equation to determine the Kp
index form solar wind parameters at L1.

ODI-F10.7
Provides F10.7 solar flux index values from the ODI F10.7 dataset.

Gorgon-Space
3D MHD magnetosphere model using a 3D cartesian grid.

ODIFF10.7 CTIP Init H CTIP Step ] CTIP Init

/ Calculate glabally the initial state of the thermosphere and the
ionosphere by solving self-consistently the coupled equations of
momentum, energy and continuity for neutral particles and ions.

Gorgon-Space

L

CTIP Step
Calculate globally the time-dependent state of the thermosphere
and the ionosphere by solving self-consistently the coupled
equations of momentum, energy and continuity for neutral
particles and ions.

MCM
A full atmosphere model developed in the framework of the
H2020 SWAMI project. It covers from the surface up to 1500 km.




Empirical Dst model

e AK2 model derived by O’Brien and McPherron [2000] magnetosphere by solar wind

e Corrected Dst index:

* *
o Simple differential equation for evolution of Dst*: dDst = O(t) — Dst _

d Decay time

4 T~ | (3-20nrs)

o Integrated using a simple forward difference: Z pf?nﬁg;tt‘;?ﬁ'ntt‘;tt'“heei?;; of energy

Centre for mathematical i

s Doumen & Maharana (2024) Plasma Astrophysics :; KU LEUVEN



Empirical Dst model with synthetic EUHFORIA data

Plasma Parameters for 12.07.2012 Simulation

On 5° Virtual Sattelite Lattice ) Or 10° Virtual Sattelite Lattice Dou men & Maharana (2024)
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Empirical Dst model with synthetic EUHFORIA data

Plasma Parameters for 04.09.2017 Simulation
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Empirical K; model

o Equation derived by Newell et al. [2008]
e Considered 496 binary combinations of 32 solar wind coupling functions
o Find the least variance linear prediction: the rate magnetic flux s

opened at the magnetopause

Kp = 0.05 + 2.244 x 10~*d® s p/dt + 2.844 x 1070n1/2?

dD s MP _

where
dt

2B sin®/3(0,./2)

and 6. = arctan(B,/B.,).
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Empirical K, model with synthetic EUHFORIA data

Plasma Parameters for 04.09.2017 Simulation
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Other empirical geo-effect models

e SNGI from the Sheffield NARMAX geomagnetic indices models
- Based on work of Ayala Solares et al. [2016]

e Feed-Forward Neural Networks like those by Wintoft and Wik [2021]
- RNN can learn mappings that are temporally correlated

- Three types of Recurrent Neural Networks
= Elman network
= Gated Recurrent Unit (GRU) network
= Long Short-term Memory (LSTM) network

- Example: EIman network: v = Vhy

hi = f(Wa; +Uhy_1)’
- GRU network has 3X more weights, LSTM 4X

Centre for mathematical AD\
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Take-home messages

Key Points:

« Space weather has a large socio-economic impact

« Space weather modelling is multi-scale and multi-physics and extremely
challenging, especially the solar wind — magnetosphere interactions

« For some problems there exist models with predictive value

« Models for sub-problems can be chained to enable Sun-to-Earth
simulations, much earlier by using synthetic data from simulations

Conclusion: a lot of modelling work remains, and novel numerical
technigues need to be developed, e.g., to speed up the simulations
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THANK YOU! EUHFORIA is also available in euhforiaonline.com
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