

GNSS Ionosphere: From Global Ionospheric Maps (GIMs) to Vertical Total Electron Content (VTEC) series

Manuel Hernandez Pajares(1,2), Victoria Graffigna (2,1), Josep María Aroca-Farrerons(1), David Roma-Dollase(3), Raul Orus-Perez(4), Alberto García-Rigo(2,1), Qi Liu(5), Germán Olivares-Pulido(1), Heng Yang(6) and Enric Monte-Moreno(7)

(1) UPC-IonSAT, Barcelona, Spain; (2) IEEC, Barcelona; (3) Instituto de Ciencias del Espacio (ICE-CSIC, IEEC), Barcelona; (4) ESA-ESTEC, The Netherlands; (5) College of Geography and Environmental Science, Henan University, Kaifeng, China; (6) School of Electronic Information and Engineering, Yangtze Normal University, Chongqing, China; (7) UPC-TALP, Barcelona

contact e-mail: manuel.hernandez@upc.edu

PITHIA-NRF & T-FORS training school,,Leuven, Belgium, 5-9 February 2024

Part 1- Visual introduction to GNSS lonosphere

Part 2- Access to UPC-IonSAT Global Ionospheric Maps PITHIA-NRF registrations (AKA global VTEC maps every 15 minutes since end of 1996, i.e. ~1 million global VTEC maps & 5x10^9 VTECs computed so far)

Part 3- New applications of GIMs: gradient VTEC GIMs and lonospheric Storm Scale GIMs

Part 4- Very basic introduction to Linux and to ionsat-tool "gim2vtec*.scr"

Part 5- Two case studies to work with: (a) Total solar eclipse during 21-Aug-2017 in NorthAmerica (b) Geomagnetic storm during 05-Nov-2023

Visual introduction to GNSS lonosphere

What is this?

UQRG-GIM Global VTEC maps 20231006.279.00000

What is this?

Movie of the vertically integrated electron number density (AKA Vertical Total Electron Content, VTEC) of the partially ionized part of the atmosphere 🗮 Earth (ionosphere) obtained from 별 worldwide Global Navigation (GNSS) Satellite System multifrequency measurements

Do you wish to check the present global VTEC, from RT UPC-IonSAT GIMs? If yes:

UQRG-GIM Global VTEC maps 20231006.279.00000

http://chapman.upc.es/tomion/real-time/quick/last_results.uadg/RT-DAILY-VTEC-MOVIE.gif DE CATALUNYA

UPC BARCELONATECH

000

Why there are free electrons within the Earth atmosphere?

Why there are free electrons within the Earth atmosphere?

The chemical reactions on the Earth atmosphere of dissociation of different molecules at different heights by solar photons (mostly in EUV and X-ray bands).

How can the VTEC distribution be explained?

How can the VTEC distribution be explained?

- In principle, taking into account with different solar irradiance in function of the latitude
- (And the Earth rotation!)

Anything else to be explained? What about the double VTEO peak (equatorial anomaly)?

Anything else to be explained? What about the double VTEO peak (equatorial anomaly)?

ExB drift, generates the fountain effect, and then, the equatorial anomaly and double peak, with a central role of the magnetic field, the magnetic equator in particular, in the distribution of the free electrons of the Earth ionosphere.

And this? How can it be explained?

RO GPS PRN17 from COSMIC1-06 LEO (150E,50°S) on 01h30m,18Sep2011

And this? How can it be explained?

- The electron number density (hereinafter electron density) vs height(*).

- The intermediate electron density peak height can be understood as the optimal height of production of free electrons, a compromise between enough number of target molecules and enough ionizing solar radiation, specially in EUV.

(*) Estimated thanks to GNSS receivers flying on a Low Earth Orbiting satellite -in this case FORMOSAT-3/COSMICmeasuring multifrequency GNSS signals from transmitters below the LEO local horizon (radio-occultation scenario).

RO GPS PRN17 from COSMIC1-06 LEO (150E,50°S) on 01h30m,18Sep2011

And what about this? Any guess?

And what about this? Any guess?

Yes, these are four Global Positioning System (GPS) transmitter providing pseudodistance signals to a receiver on board an airplane (this an "artistic" composition NOT following the real distance scale).

And now, who can explain these layouts?

Ser Com

And now, who can explain these layouts?

Yes, it illustrates the trilateration concept, foundation of GNSS for positioning: knowing the position of the center of at least three(*) spheres in different directions -GNSS transmitters on MEOs- and the radius of such spheres -from the pseudorange measurements-, we get the receiver position X,Y,Z -intersection-).

Now, any guess or comment about this plot?

lonospheric combination (meters, PRN01

Now, any guess or comment about this plot?

onospheric combination (meters, PRN01)

-We can see how the code (i.e. pseudorange) and phase measurements ("ionospheric combination") of a given GPS transmitter ("PRN01") from a given receiver, complement each other very well:

-The code measurements are accurate (pseudorange) but not precise (measurement noise and multipath >~1 m).

-The carrier phase measurements are not accurate (unknown ambiguity = pseudorange at phase lock) but very precise (measurement noise and multipath < 1cm).

Finally, the electron content is inside GNSS measurements!²⁰

$$L_I \equiv L_1 - L_2 = \alpha \cdot S - \beta \cdot \phi + B_I, \tag{17}$$

$$P_I \equiv P_2 - P_1 = \alpha \cdot S + D_I + D'_I + \epsilon_M + \epsilon_T, \qquad (18)$$

where $\alpha = 40.309 \left(\frac{1}{f_2^2} - \frac{1}{f_1^2} \right) = 1.05 \cdot 10^{-17} \, m^3, \, \beta =$ $c\left(\frac{1}{f_2} - \frac{1}{f_1}\right) = 0.054 \,\mathrm{m}, B_I = B_1 - B_2, D_I = D_2 - D_1$ and $D'_{I} = D'_{2} - D'_{1}^{2}$. In this case, we also made explicit the two main components of the measurement error, both corresponding to the code: the multipath code error ϵ_M and the thermal noise measurement error $\epsilon_{\rm T}$. Typically, the windup term $\beta \cdot \phi$ is a centimeter-level term. For the permanent receivers, this term can be corrected very accurately from their coordinates and orbital information, and it is not discussed explicitly herein.

Finally, the electron content is inside GNSS measurements!²¹

highly -Then the variable ionospheric magnitude, STEC, is directly given by the ionospheric combination of dual-frequency carrier phases and pseudoranges recently shown for ionospheric viewing problems such as plasma bubble detection).

-Other additional terms, are either scales of hours constant at (ambiguity BI, Differential Code Biases, DI, DI') or are small and can be very well modelled (wind-up term $\beta^*\phi$).

$$L_I \equiv L_1 - L_2 = \alpha \cdot S - \beta \cdot \phi + B_I, \qquad (17)$$

$$P_I \equiv P_2 - P_1 = \alpha \cdot S + D_I + D'_I + \epsilon_M + \epsilon_T, \qquad (18)$$

(L & P): This is the main input data source for GNSS lonosphere! where $\alpha = 40.309 \left(\frac{1}{f_2^2} - \frac{1}{f_1^2}\right) = 1.05 \cdot 10^{-17} m^3$, $\beta =$ (among the good performance of single-frequency measurements $c\left(\frac{1}{f_2}-\frac{1}{f_1}\right) = 0.054 \text{ m}, B_I = B_1 - B_2, D_I = D_2 - D_1$ certain and $D'_I = D'_2 - D'_1^2$. In this case, we also made explicit the two main components of the measurement error, both corresponding to the code: the multipath code error ϵ_M and the thermal noise measurement error $\epsilon_{\rm T}$. Typically, the windup term $\beta \cdot \phi$ is a centimeter-level term. For the permanent receivers, this term can be corrected very accurately from their coordinates and orbital information, and it is not discussed explicitly herein.

Conclusion: GNSS Ionosphere is well data-supported

~ 100 GNSS trans. & +1000 24/7 static GNSS rec. (+100 in RT)

Worldwide scanner of the lonosphere, an excellent input to generate Global lonospheric Maps (GIMs) of VTEC maps (summarizing Big GNSS data), among many other ways of modelling / studying the ionosphere

Conclusion: GNSS lonosphere is well data-supported

GNSS lonosphere:

"Effects and computation of the distribution of free electrons, located at the partially ionized part of the atmosphere above 50 km height, from the Global Navigation Satellite (GNSS) **Systems** usually measurements, multi-frequency, crossing it; and its applications, such as Space Weather monitoring, precise realtime positioning and, in general, precise geodetic modelling among others"

UNIVERSITAT POLITÈCNICA BARCELONATECH

~ 100 GNSS trans. & +1000 24/7 static GNSS rec. (+100 in RT)

Worldwide scanner of the lonosphere, an excellent input to generate Global lonospheric Maps (GIMs) of VTEC maps (summarizing Big GNSS data), among many other ways of modelling / studying the ionosphere

Conclusion: GNSS lonosphere is well data-supported

GNSS lonosphere:

"Effects and computation of the distribution of free electrons, located at the partially ionized part of the atmosphere above 50 km height, from the Global Navigation Satellite (GNSS) **Systems** *measurements, usually* multi-frequency, crossing it; and its applications, such as Space Weather monitoring, precise realtime positioning and, in general, precise geodetic modelling among others"

UNIVERSITAT POLITÈCNICA

DE CATALUNYA

BARCELONATECH

000 UPC

Part 2

Access to UPC-IonSAT Global Ionospheric Maps PITHIA-NRF registrations (AKA global VTEC maps every 15 minutes since end of 1996, i.e. ~1 million global VTEC maps & 5x10^9 VTECs computed so far)

GNSS Ionosphere

GNSS lonosphere¹: Effects and computation of the distribution of free electrons, located at the partially ionized part of the atmosphere above 50 km height, from the Global Navigation Satellite Systems (GNSS) multi-frequency measurements crossing it; and its applications, such as Space Weather monitoring, precise real-time positioning and, among others.

The ionosphere in brief seen by GNSS

 The ionosphere is typically distributed from around 50 km to 1000 km height, where some predominant air molecules, such as O₂ and NO at the very bottom and mostly O above, are partially ionized respectively by the x-ray and specially Extreme Ultraviolet (EUV) solar flux (see for instance²).

VTEC / TECUs 01h30m,18Sep2011 (source: UQRG GIMs from UPC-IonSAT)

²Peter Teunissen and Oliver Montenbruck. Springer handbook of global navigation satellite systems. Springer, 2017, 1327, DOI: 10.1007/978–3–319–42928–1.

Global Electron Content (GEC)

As consequence of its main origin, the total number of ionosphere free electrons (GEC) follows closely the solar activity, specially in normal (undisturbed) conditions: see the GEC time series obtained from the UQRG GIMs, computed every 15 minutes since end of 1996. The origin of features, like the semiannual and annual anomalies, are still under discussion (³).

GPS time / years (from 15-Nov-1996 to 03-May-2023)

³Francisco Azpilicueta and Claudio Brunini. "A new concept regarding the cause of ionosphere semiannual and annual anomalies". In: Journal of Geophysical Research: Space Physics 116.A1 (2011).

Introduction to TOMION model (3 of 3)

- TOMION is the software used in the generation of UPC-IonSAT GIMs of VTEC for the International GNSS Service (IGS), such as the UQRG one, one of the best behaving GIMs in IGS (⁹,¹⁰,¹¹).
- The tomography performed by TOMION is able to combine different data and geometries (¹²), in agreement with independent measurements and models (¹³,¹⁴), also in the polar regions (¹⁵).

⁹M Hernández-Pajares et al. "The IGS VTEC maps: a reliable source of ionospheric information since 1998". In: *Journal of Geodesy* 83.3-4 (2009), pp. 263–275.

¹⁰Manuel Hernández-Pajares et al. "Methodology and consistency of slant and vertical assessments for ionospheric electron content models". In: *Journal of Geodesy* 91.doi:10.1007/s00190-017-1032-z (2017), pp. 1405–1414.

¹¹David Roma-Dollase et al. "Consistency of seven different GNSS global ionospheric mapping techniques during one solar cycle". In: *Journal of Geodesy* 92.6 (2018), pp. 691–706.

¹²Manuel Hernández-Pajares et al. "A new way of improving global ionospheric maps by ionospheric tomography: consistent combination of multi-GNSS and multi-space geodetic dual-frequency measurements gathered from vessel-, LEO-and ground-based receivers". In: *Journal of Geodesy* 94.8 (2020), pp. 1–16.

¹³DV Kotov et al. "Coincident observations by the Kharkiv IS radar and ionosonde, DMSP and Arase (ERG) satellites, and FLIP model simulations: Implications for the NRLMSISE-00 hydrogen density, plasmasphere, and ionosphere". In: *Geophysical Research Letters* 45.16 (2018), pp. 8062–8071.

¹⁴DV Kotov et al. "Weak magnetic storms can modulate ionosphere-plasmasphere interaction significantly: Mechanisms and manifestations at mid-latitudes". In: *Journal of Geophysical Research: Space Physics* 124.11 (2019), pp. 9665–9675.

¹⁵Manuel Hernández-Pajares et al. "Polar Electron Content From GPS Data-Based Global Ionospheric Maps: Assessment, Case Studies, and Climatology". In: Journal of Geophysical Research: Space Physics 125.6 (2020), e2019JA027677.

2

https://esc.pithia.eu

Home

PITHIA-NRF e-Science Centre

Search & Browse Metadata

HOME SEARCH & BROWSE ▼

Space Physics Ontology Data Registration

	EIS foF2 Forecasts Over Digisonde Stations	HORIZON 2020
	EIS foF2 Long Term Prediction Maps	
	EIS foF2 Nowcast Maps	
	EIS hmF2 Nowcast Maps	
-	EIS Ionospheric Alerts	
	EIS Near Real-Time TEC Maps	
	EPB_detectionTool	
	eSWua: lonograms database, autoscaled records	
	eSWua: lonograms database, manually scaled records	
	eSWua: Scintillation Indices and Total Electron Content (TEC) database	
	EUHFORIA: EUropean Heliospheric FORecasting Information Asset	
	GIM: Global Ionosphere Maps	
	hmF2_qModel	
	IAP-P Doppler sounder spectrograms	
	IPIM : Ionosphere-Plasmasphere IRAP Model	
	IRI: International Reference Ionosphere version 2001	
	IRTAM 3D global real-time assimilative model of ionospheric electron density	
	NOA Athens Digisonde (AT138) Data	
	RayTRIX-CQP: Oblique ionogram synthesizer with E, F1, F2 layer echo traces and MUFs, driven by IRTAM ionospheric nowcast	
	ROB-IONO Near-Real Time European Ionospheric Maps	
	SWIF Model	
INC		/ onSAU

UNIVERSITAT POLITÈC DE CATALUNYA BARCELONATECH

TechTIDE LSTID activity index

The EU Framework Programme for Research and Innovation

000

UPC

PITHIA-NRF e-Science Centre

HOME SEARCH & BROWSE -

Home / Browse Metadata / Data Collection-related Metadata / Data Collections / GIM: Global Ionosphere Maps

GIM: Global Ionosphere Maps

Global Vertical Total Electron Content 2D map computed using UPC Rapid Network of GPS receivers

Interact

Interaction Method	Description	Data Format	Link
Direct Link to Data Collection	The GIM landing page has the list of data the 15-minutes maps.	text/html (click the link to show information on this ontology term)	<u>Open GIM Landing</u> <u>Page in new tab</u> ♂

Properties

	Property	Value
	Туре (1/2)	Receiver of GNSS signals (click the link to show information on this ontology term)
	Туре (2/2)	Assimilative Model (click the link to show information on this ontology term)
	Project	GIM: Global lonospheric Maps (click the link to show information on this metadata registration)
	Data Level	Level 3 (click the link to show information on this ontology term)
	Result	Not used
DE CATALUNYA BARCELONATEC	Permission	Creative Commons Attribution-NonCommercial-ShareAlike (click the link to show information on this ontology term)

The EU Framework Programm HORIZON 2020

Identifier Properties

Local ID	DataCollection_UPC- RapidNetwork_GIM	
Namespace	pithia	
Version	1	
Created	Tuesday 20th Dec. 2022, 09:30:00	
Last Modified	Tuesday 20th Dec. 2022, 09:30:00	

UPC

HIA-NR	Role (from Related Party (1/2) > Responsible Party Info)	Point of contact (click the link to show information on this ontology term)	
Proh Infrastrue	Party (from Related Party (1/2) > Responsible Party Info)	Manuel Hernandez-Pajares (click the link to show information on this metadata registration)	4
	Role (from Related Party (2/2) > Responsible Party Info)	Data Provider (click the link to show information on this ontology term)	
	Party (from Related Party (2/2) > Responsible Party Info)	UPC-IonSAT (click the link to show information on this metadata registration)	
	Result Time	Not used	
	Name (from Collection Results > Source > Online Resource)	GIM Landing Page	
	URL (from Collection Results > Source > Online Resource > Linkage)	http://cabrera.upc.es/upc_ionex_GPSonly-RINEXv3 0	
	Protocol (from Collection Results > Source > Online Resource)	НТТР	
	Data Format (from Collection Results > Source > Online Resource)	text/html (click the link to show information on this ontology term)	
UNIVERSITAT POLITÈCNIC DE CATALUNYA BARCELONATECH	Description (from Collection Results > Source > Online	The GIM landing page has the list of the 15-minutes ionex files.	

The EU Framework Programme for Research and Innovation

HORIZON 2020

Index of /upc_ionex_GPSonly-RINEXv3

<u>Name</u>	Last modified	Size Description
Parent Directory		-
<u>1996/</u>	2022-10-09 15:56	-
<u>1997/</u>	2020-04-08 10:56	-
<u>1998/</u>	2020-04-08 10:56	-
<u>1999/</u>	2020-04-08 10:56	-
<u> </u>	2020-04-08 10:56	-
<u>2001/</u>	2020-04-08 10:56	-
<u>2002/</u>	2022-10-09 16:23	-
<u>2003/</u>	2020-04-08 10:56	-
<u>2004/</u>	2020-04-08 10:56	-
<u> </u>	2020-04-08 10:56	-
<u>2006/</u>	2022-10-09 16:22	-
<u> </u>	2020-04-08 10:56	-
<u> </u>	2020-04-08 10:56	-
<u> </u>	2020-04-08 10:56	-
<u>2010/</u>	2020-04-08 10:56	-
<u>201</u>	2020-04-08 10:56	-
<u>2012</u>	2020-04-08 10:56	-
<u> </u>	2020-04-08 10:56	-
 <u>2014/</u>	2020-04-08 10:56	-
<u> </u>	2020-04-08 10:56	-
<u> </u>	2020-04-08 10:56	-

	UNIVERSITAT POLITÈCNICA DE CATALUNYA
UPC	BARCELONATECH

UPC

Index of /upc_ionex_GPSonly-RINEXv3/2010

Last modified Size Description Name Parent Directory 001_100101.15min/ 2020-04-08 10:56 <u>002_100102.15min/</u> 2020-04-08 10:56 003_100103.15min/ 2020-04-08 10:56 <u>004_100104.15min/</u> 2020-04-08 10:56 <u>005_100105.15min/</u> 2020-04-08 10:56 <u>006_100106.15min/</u> 2020-04-08 10:56 007 100107.15min/ 2020-04-08 10:56 008 100108.15min/ 2020-04-08 10:56 <u>009_100109.15min/</u> 2020-04-08 10:56 <u>010_100110.15min/</u> 2020-04-08 10:56 <u>011_100111.15min/</u> 2020-04-08 10:56 <u>012_100112.15min/</u> 2020-04-08 10:56 <u>013_100113.15min/</u> 2020-04-08 10:56 014 100114.15min/ 2020-04-08 10:56 015 100115.15min/ 2020-04-08 10:56 <u>016_100116.15</u> 2020-04-08 10:56 017 100117.15m n/ 2020-04-08 10:56 018 100118.15min/ 2020-04-08 10:56 <u>019_100119.15min/</u> 2020-04-08 10:56 UNIVERSITA 020 100120.15min/ 2020-04-08 10:56 DE CATALUN BARCELONA 021 100121.15min/ 2020-04-08 10:56

Index of /upc_ionex_GPSonly-RINEXv3/2010/015_100115.15min

NameLast modifiedSizeDescription

Parent Directory - <u>uqrg0150.10i.Z</u> 2018-11-09 19:12 919K

Format (IGS): uqrg\$DOY0.\$YYi.Z

IONEX

Center Day of Year Year

Index of /upc_ionex_GPSonly-RINEXv3/2010/015_100115.15min

Last modified Size Description

Parent Directory uqrg0150.10i.Z 2018-11-09 19:12 919K

Apache/2.4.29 (Ubuntu) Server at cabrera.upc.es Port 80

Do you want to allow downloads on "cabrera.upc.es"?

You can change which websites can download files in Websites Preferences.

Cancel

	THIA-No		
Q			1
	arch Infrastruce	/////	
The A		9 - 1-1-1-1	4
X X		ha	
		And Conference of Conference of	
			J.
			f -

UPC

• • •

HIA-N	1.0			IONOS	SPHERE	E MAPS	5	GPS				IONEX VERSION / TYPE
· · · · · · · · · · · · · · · · · · ·	tecrms2io	nex_4	.awk	UPC-1	[onSAT	-		11/09	9/18 :	171101	Γ	PGM / RUN BY / DATE
	Global io	nosphe	ere ma	aps fo	or day	/ 15	, 201	0 (15-	- 1-20	010)		DESCRIPTION
	Contact a	ddress	s: Mar	nuel H	lernar	ndez-l	Pajar	es				DESCRIPTION
^{rch} Infrast			Ior	ו SAT	cesear	ch g	roup					DESCRIPTION
			Тес	chnica	al Uni	.v. o	f Cat	alonia	a (UP)	C-Ions	SAT)	DESCRIPTION
X			Мос	d. C3	Campu	is Not	rd UP	С	•			DESCRIPTION
			E08	3034-8	Barcel	ona,	SPAI	N				DESCRIPTION
			e-n	nail:	manu	uel@ma	a4.up	c.edu				DESCRIPTION
												DESCRIPTION
												DESCRIPTION
	P1-P2 DCB	s (UPC3	3-BRDO	C) 15	5 2010): Bia	as=	0.000	RMS=	0.855	5 [ns	1DESCRIPTION
											2	DESCRIPTION
en e	2010	1	15	0	e)	0					FPOCH OF FIRST MAP
	2010	1	15	23	59	, ,	24					EPOCH OF LAST MAP
	900	-			•	-						INTERVAL
	97											# OF MAPS IN FILE
	COSZ											MAPPING FUNCTION
	0.0											ELEVATION CUTOFF
	300											# OF STATIONS
	32											# OF SATELLITES
	6371.0											BASE RADIUS
	2											MAP DIMENSION
	450.0	450.0	0.0	3								HGT1 / HGT2 / DHGT
	87.5	-87.5	-2.5	5								LAT1 / LAT2 / DLAT
	-180.0	180.0	5.6	3								LON1 / LON2 / DLON
	-1											EXPONENT
	TEC value	s in	0.1	TECUs	9999	, if i	no va	lue av	vaila	ble		COMMENT
	IGS GPS s	tatior	ns use	ed in	the c	comput	tatio	ns:				COMMENT
	019b ab02	ab07	ab08	ab11	ab14	ab25	ab27	ab37	ab39	ab41	ab43	COMMENT
	ab44 abmf	abpo	ac03	ac12	ac60	ac61	acor	acso	acu5	ade1	adks	COMMENT
	agmt ahid	aira	ajac	alac	alam	albh	algo	alic	allg	alon	alrt	COMMENT
	amc2 ankr	antc	areq	arli	artu	asky	aspa	auck	autf	baie	bake	COMMENT
	bako bamo	ban2	barh	bcyi	bdos	bell	bjfs	bla1	blmm	bluf	boav	COMMENT
	bogt bomj	brft	brib	brip	brmu	brst	brus	bshm	bsmk	bucu	bue1	COMMENT
	buri bysp	cabl	cagl	call	cand	cant	cas1	casc	ccj2	cedu	cefe	COMMENT
	cfag chan	chat	chiz	chme	chum	chur	cjtr	ckis	clrk	cmbl	cnmr	COMMENT
	coco cont	соро	cosa	coyq	crao	crar	cuib	cusv	daej	dane	darw	COMMENT
	dav1 devi	dgar	dgjg	dksg	drao	dres	dum1	dupt	ecsd	edoc	eur2	COMMENT
	faa1 falk	fall	flin	flrs	func	g101	g107	g117	g124	g201	g202	COMMENT
	ganp gisb	glps	glsv	gmas	gmma	guat	harb	hdil	helg	her2	hil1	COMMENT
UNIVERSITAT DOLUTÈCHICA	hilb hlfx	hmba	hnlc	hob2	hobu	hofn	holm	howe	hrst	hueg	hugo	COMMENT
DE CATALUNYA	hvlk hvwy	hyde	ifr1	impz	ineg	invk	iqal	iqqe	irkj	isba	ispa	COMMENT
PADOEL ONATECH	ista jct1	joen	karr	kerg	khaj	khar	kir0	kiri	kit3	kouc	kour	COMMENT
BARGELONATECH	ksnb kuaq	kunm	kuuj	kvtx	lafe	lamt	laut	lhaz	lpal	lthw	mac1	COMMENT

Terminal — more < sh - /usr/bin/zmore

The EU Framework Programme for Research and Innovation HORIZON 2020

Part 3

New applications of GIMs: gradient VTEC GIMs and Ionospheric Storm Scale GIMs

0. Motivation

In this work we summarize the approach, results and answer to the question that we did ourselves almost two years ago:

Can the high temporal resolution <u>VTEC Global Ionospheric Maps</u> (GIM, such as UQRG generated by UPC-IonSAT since end 1996) directly provide **reliable estimation** of the spatial and temporal components of the **VTEC gradients**, and of a sensitive **Ionospheric storm scale index**, with **comparable results** to the corresponding indices proposed and generated by other colleagues from <u>raw GNSS data</u> (respectively Jakowski & Hoque 2019, and Nishioka et al. 2017)?

Jakowski, N., & Hoque, M. M. (2019). Estimation of spatial gradients and temporal variations of the total electron content using ground-based GNSS measurements. Space Weather, 17, 339–356. https://doi.org/10.1029/2018SW002119.

Nishioka, M., T. Tsugawa, H. Jin, and M. Ishii (2017), A new ionospheric storm scale based on TEC and f o F 2 statistics, Space Weather, 15, 228–239, doi:10.1002/2016SW001536.

2. Defining the components of VTEC gradient from the GIM

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH The spatial and temporal components of VTEC gradient at grid points of UQRG GIM on a global scale are introduced.

The VTEC gradient derived from UQRG GIMs (VgUG, Liu et al. 2022), **allows** to obtain full (non-relative) values of TEC spatial gradients and temporal variations **separately at any worldwide grid point**, considering the distances on the corresponding parallels and meridians at the ionospheric efective height, Δ DLON & Δ DLAT, separated 5° & 2.5° respectively, and the time difference between GIMs Δ t (30 minutes, centered, 15 minutes, uncentered).

 $\nabla V_{x,i,j} = (VTEC_{i,j} - VTEC_{i-1,j})/\Delta DLON$

 $\nabla V_{y,i,j} = (VTEC_{i,j} - VTEC_{i,j-1})/\Delta DLAT$

 $\nabla V_{i,j} = \sqrt{\nabla V_{x,i,j}^2 + \nabla V_{y,i,j}^2}$

 $\left[\nabla \vec{V} = (\nabla V_{x,i,j}, \nabla V_{y,i,j})\right]$ $\dot{V}_{i,j} = \Delta VTEC_{i,j} / \Delta t = (VTEC_{i,j,t} - VTEC_{i,j,t-1}) / \Delta t$

2.1 Example of global distribution of VTEC spatial gradient Quiet St. Patrick's day storm

Compared with the quiet ionospheric state, the VTEC spatial and temporal gradient directly derived from the GIM are able to capture the extraordinary VTEC variations during the disturbed ionospheric state, spltted in north, east and time components.

St. Patrick's Day 2015 Geomagnetic Storm

180°

120°E

100

180°

000

UPC

4. Extending the definition of the lonospheric storm scale index to GIMs (IsUG)

We propose the lonospheric Storm Scale Index Based on UQRG (IsUG) as a direct extension of the I-scale index proposed at regional level (Japan) and from raw GNSS data by Nishioka et al. (2017):

$$P_{TEC} = \frac{100 \times (O_{TEC} - R_{TEC})}{R_{TEC}} \qquad \qquad \hat{P}_{TEC} = \frac{P_{TEC} - \mu}{\sigma}$$

It is defined as the standardized Ptec, P_{TEC} , where Ptec is the percentage deviation of VTEC, Otec is the hourly median VTEC derived at grid points of GIM. The hourly median VTEC is the median of the five VTEC values during 1-h interval, under the GIM VTEC temporal resolution of 15 min. The hourly median VTEC is calculated every hour (for example, 0, 1, 2 UT). Rtec is the reference median value at the same local time and geographic location in the past 27 days.

IsUG	Description	Definition	Probability on a global scale (%
IP3	Severe positive storm	$5 < \hat{P}$	0.17
IP2	Strong positive storm	$3<\hat{P}\leq 5$	0.72
IP1	Moderate positive storm	$1 < \hat{P} \leq 3$	12.43
10	Quiet	$-1 < \hat{P} \leq 1$	73.96
IN1	Moderate negative storm	$-2 < \hat{P} \leq -1$	11.72
IN2	Strong negative storm	$-3 < \hat{P} \le -2$	0.95
IN3	Severe negative storm	$\hat{P} < -3$	0.06

4.2 Comparing \hat{P}_{TEC} from GIM \hat{P}_{TEC} from raw GNSS data over Japan since 1997 to 2014 (3 months of seasonal data per year)

4.6 Animation of IsUG maps during a quiet period

UPC

4.6 Animation of IsUG maps during a ionospheric storm period

UNIVERSITAT

DE CATALUNY

BARCELONAT

UPC

2004-11-07 (doy: 312) 00:00:00

Space Weather **RESEARCH ARTICLE**

10.1029/2021SW002853

Key Points:

- The new ionospheric storm scale, IsUG, is presented
- The IsUG is based on the high resolution and rapid UPC-IonSAT Global Ionosphere Maps (UQRG) Statistical analysis is carried out
- on a global scale from 1997 to 2014 comparing well with the available raw GNSS data based I-scale index

Supporting Information: Supporting Information may be found in the online roundon of this outida

Ionospheric Storm Scale Index Based on High Time Resolution UPC-IonSAT Global Ionospheric Maps (IsUG)

Qi Liu¹ ⁽¹⁾, Manuel Hernández-Pajares^{1,2} ⁽¹⁾, Haixia Lyu^{3,1} ⁽¹⁾, Michi Nishioka⁴, Heng Yang^{5,1}, Enric Monte-Moreno⁶, Tamara Gulyaeva⁷, Yannick Béniguel⁸, Volker Wilken⁹, Germán Olivares-Pulido¹, and Raül Orús-Pérez¹⁰

r n

¹Universitat Politècnica de Catalunya (UPC-IonSAT), Barcelona, Spain, ²Institut d'Estudis Espacials de Catalunya (IEEC), Barcelona, Spain, ³GNSS Research Center, Wuhan University, China, ⁴National Institute of Information and Communications Technology (NICT), Tokyo, Japan, ⁵School of Electronic Information and Engineering, Yangtze Normal University, Chongqing, China, ⁶Department of TSC, TALP, Universitat Politècnica de Catalunya, Barcelona, Spain, ⁷IZMIRAN, Moscow, Russia, ⁸Informatique, Electromagnétisme, Electronique, Analyse numérique (IEEA), Courbevoie, France, ⁹German Aerospace Center (DLR), Neustrelitz, Germany, ¹⁰Wave Interaction and Propagation

Section (TEC-EFW) ESA ESTEC, Noordwijk, The Netherlands

Space Weather

RESEARCH ARTICLE 10.1029/2021SW002926

Key Points:

- A new ionospheric temporal and spatial gradient index based on UPC-IonSAT Global Ionosphere Maps (UQRG) are presented at the selected region
- The new ionospheric spatial gradients indices at grid points of UQRG are presented
- The derived ionospheric spatial gradients and temporal variations indices are analyzed during quiet and disturbed ionosphere states

A New Way of Estimating the Spatial and Temporal **Components of the Vertical Total Electron Content Gradient Based on UPC-IonSAT Global Ionosphere Maps** Qi Liu¹ ^(D), Manuel Hernández-Pajares^{1,2} ^(D), Heng Yang^{1,3} ^(D), Enric Monte-Moreno⁴ ^(D), Alberto García-Rigo^{1,2} , Haixia Lyu^{1,5} , Germán Olivares-Pulido¹, and Raül Orús-Pérez⁶

¹Universitat Politècnica de Catalunya (UPC-IonSAT), Barcelona, Spain, ²Institut d'Estudis Espacials de Catalunya (IEEC), Barcelona, Spain, ³School of Electronic Information and Engineering, Yangtze Normal University, Chongqing, China, ⁴Department of TSC, TALP, Universitat Politècnica de Catalunya, Barcelona, Spain, ⁵GNSS Research Center, Wuhan University, Wuhan, China, "Wave Interaction and Propagation Section (TEC-EFW) ESA ESTEC, Noordwijk, The

Netherlands

FIRST INNOVATION DAY A HORIZON 2020 PROJECT

21 June 2022 | ROME

INDUSTRIE FLUVIALI

Join us in Rome or online! **REGISTER AT:** www.progetti.ingv.it/PITHIA/

UNIVERSITAT POLITÈCNICA **DE CATALUNYA** UPC BARCELONATECH

Very basic introduction to Linux and to ionsat-tool "gim2vtec*.scr"

Layout:

- [Motivation] Precise Agriculture (PA) presentation (EU AUDITOR experiment)
 - [Background]: Brief introduction to main identified points of the presentation:
 - a) GPS fundamentals: pseudoranges and carrier phases (optional)
 - b) Ionospheric electron content
 - c) Wide Area Real-Time Kinematic
 - d) The International GNSS Service (optional)
- 3) [One efficient operative system] Quick introduction to Linux (optional)
- 3) [New tools for learning and research] IonSAT Tools (IT), emulating Real-Time (RT) as much as possible (presented on the PA AUDITOR experiment):
 - a) gim2vtec.v2.scr

1)

1)

5)

ı 5)

I 5)

- b) gimrnx2stec.v2.scr
- [IT application to ECLIPSE, FLARE & GSTORM scenarios] (optional).
- [Example of RT GPS-ionospheric system]: UPC-IonSAT since 2012.
- [Monitoring of co-seismic generated ionospheric signals]: Application of RT ionospheric sounding for potential Tsunami warnings), with GNSS dense (Tohoku and mid earthquakes, EQ) and sparse networks (Chile 2015 EQ).

Connection to server (from xterm or similar)

≻ssh –X ionsat-tools-userYY@chapman.upc.es

Where YY is the User Id. # (starting on 01), and the password, should be given to you at the beginning of the corresponding laboratory session.

You will find in the next few slides a quick introduction to very basic Linux, the opensource, reliable and high performance operative system for computers.

😞 🗖 🔲 🛛 manuel@manuel-HP-ENVY-Notebook-13-ab0XX: ~ File Edit View Search Terminal Help manuel@manuel-HP-ENVY-Notebook-13-ab0XX:~\$ ssh -X user01@localhost user01@localhost's password: Welcome to Ubuntu 16.04.2 LTS (GNU/Linux 4.10.0-37-generic x86_64) * Documentation: https://help.ubuntu.com * Management: https://landscape.canonical.com * Support: https://ubuntu.com/advantage 272 packages can be updated. 20 updates are security updates. Last login: Sat Nov 4 23:33:39 2017 from 127.0.0.1 manuel-HP-ENVY-Notebook-13-ab0XX:~> pwd /home/user01 manuel-HP-ENVY-Notebook-13-ab0XX:~> mkdir ionsat-lab-01 manuel-HP-ENVY-Notebook-13-ab0XX:~> cd ionsat-lab-01/ manuel-HP-ENVY-Notebook-13-ab0XX:~/ionsat-lab-01> pwd /home/user01/ionsat-lab-01 manuel-HP-ENVY-Notebook-13-ab0XX:~/ionsat-lab-01> echo -2 4 > x_y.tmp manuel-HP-ENVY-Notebook-13-ab0XX:~/ionsat-lab-01> echo -1 1 >> x_y.tmp manuel-HP-ENVY-Notebook-13-ab0XX:~/ionsat-lab-01> echo 0 0 >> x_y.tmp manuel-HP-ENVY-Notebook-13-ab0XX:~/ionsat-lab-01> echo 1 1 >> x_y.tmp manuel-HP-ENVY-Notebook-13-ab0XX:~/ionsat-lab-01> echo 2 4 >> x_y.tmp manuel-HP-ENVY-Notebook-13-ab0XX:~/ionsat-lab-01> more x y.tmp -24 -11

- 0 0
- 1 1


```
风 🗖 🗊 manuel@manuel-HP-ENVY-Notebook-13-ab0XX: ~
 File Edit View Search Terminal Help
 manuel-HP-ENVY-Notebook-13-ab0XX:~/ionsat-lab-01> pgiv -i x_y.png
 ** (pgiv:18405): WARNING **: Couldn't register with accessibility bus: Did not r
 eceive a reply. Possible causes include: the remote application did not send a r
 eply, the message bus security policy blocked the reply, the reply timeout expir
 ed. or the network connection was broken.
 ^Z
 Suspended
 manuel-HP-ENVY-Notebook-13-ab0XX:~/ionsat-lab-01> bg
       pqiv -i x_y.png &
 [1]
 manuel-HP-ENVY-Notebook-13-ab0XX:~/ionsat-lab-01> gawk '{print $1,$1**3}' x y
 x_y.png x_y.tmp
 manuel-HP-ENVY-Notebook-13-ab0XX:~/ionsat-lab-01> gawk '{print $1,$1**3}' x_y.tm
 p > x x3.tmp
 manuel-HP-ENVY-Notebook-13-ab0XX:~/ionsat-lab-01> gnuplot
        GNUPLOT
        Version 5.0 patchlevel 3
                                   last modified 2016-02-21
        Copyright (C) 1986-1993, 1998, 2004, 2007-2016
         Thomas Williams, Colin Kelley and many others
         gnuplot home:
                          http://www.gnuplot.info
         fag, bugs, etc: type "help FAO"
         immediate help: type "help" (plot window: hit 'h')
 Terminal type set to 'qt'
 qnuplot> plot "x x3.tmp" w lp
 gnuplot> plot "x_x3.tmp" w lp,x**3
 gnuplot> set term png
 Terminal type set to 'png'
 Options are 'nocrop enhanced size 640,480 font "/usr/share/fonts/truetype/libera
 tion/LiberationSans-Regular.ttf,12"
 gnuplot> set output "x_x3.png"
 gnuplot> replot
gnuplot> quit
```

UPC

Layout: [Motivation] Precise Agriculture (PA) presentation (EU AUDITOR experiment) [Background]: Brief introduction to main identified points of the presentation: a) GPS fundamentals: pseudoranges and carrier phases (optional) b) Ionospheric electron content c) Wide Area Real-Time Kinematic

- d) The International GNSS Service (*optional*)
- 3) [**One efficient operative system**] Quick introduction to Linux (*optional*)
- 3) [New tools for learning and research] IonSAT Tools (IT), emulating Real-Time (RT) as much as possible (presented on the PA AUDITOR experiment):
 - a) gim2vtec.v2.scr

1)

1)

5)

ı 5)

I 5)

- b) gimrnx2stec.v2.scr
- [IT application to ECLIPSE, FLARE & GSTORM scenarios] (optional).
- [Example of RT GPS-ionospheric system]: UPC-IonSAT since 2012.
- [Monitoring of co-seismic generated ionospheric signals]: Application of RT ionospheric sounding for potential Tsunami warnings), with GNSS dense (Tohoku and mid earthquakes, EQ) and sparse networks (Chile 2015 EQ).

- IonSAT tool gimrnx2stec.v2.scr: New Linux script for Slant TEC (STEC) computation from GIM-calibrated GPS meas. Carrier phase prepro.
- ➤The first suggested application is for the *motivating* AUDITOR experiment (June 13th, 2017) described in section 1, and for the baseline between reference and permanent receiver, similar to the

gim2vtec.v2.scr & gimrnx2stec.v2.scr @ AUDITOR

>ssh –X ionsat-tools-userYY@chapman.upc.es

>Where YY the User Id. # (from 01), and the password is given to you at the

heatinning of the Jahoratory session

man:~% whoami at-tools-user00 man:~% pwd e/ionsat-tools-user00 man:~% cd ils man:~/ils% ~/w/bin/gim2vtec.v2.scr => (VTECvsTIME) year0 (e.g. 2017) month0 (e.g. 6) day_of_month0 (e.g. 12) ye (e.g. 2017) month1 (e.g. 6) day_of_month1 (e.g. 14) GIM_IONEX_ID (e.g. uqrg) dtsec_GIM_VTEC (e.g. 120 unID (e.g. Tractor_exp) view_final_plots (y/n) run_level (VTECvsTIME_extraction, VTECvsTIME_plots) rec rID 1 (e.g. borj) ... receiverID_N (e.g. ijmu) e: gim2vtec.v2.scr runmode => (VTECvsLAT) year (e.g. 2017) month0 (e.g. 6) day_of_month0 (e.g. 12) mont e.g. 6) day of month1 (e.g. 14) longitude (e.g. 4.556064337) GIM IONEX ID (e.g. uqrq) runID (e.g. Tra exp) view final plots (y/n) run level (VTECvsLAT extraction, VTECvsLAT movie) man:~/ils% ~/w/bin/gimrnx2stec.v2.scr e: gimrnx2stec.v2.scr year0 (e.g. 2017) month0 (e.g. 6) day_of_month0 (e.g. 12) year1 (e.g. 2017) mon (e.g. 6) day_of_month1 (e.g. 14) GIM_IONEX_ID (e.g. uqrg) rinex_sampling_time_in_seconds (e.g. 30) ru (e.g. Tractor_exp) generate_plots (y/n) view_overall_plot_STECvsTIME (y/n) run_level (STEC computatio TEC extraction, overall STECvsTIME) receiverID 1 (e.g. borj) ... receiverID N (e.g. ijmu) man:~/ils%

gim2vtec.v2.scr & gimrnx2stec.v2.scr @ AUDITOR

>An to get more productivity:

AT POLITÈCNICA

BARCELONATECH

chapman:~% whoami
chapman:~% cd ~/ils
chapman:~% pwd
chapman:~% ls -l
chapman:~% xedit run.lonSAT-lab_sessions.v4b.scr &

Uncomment (remove the first leading #) the three command lines for AUDITOR block, save and run the script:

>chapman:~% ./run.lonSAT-lab_sessions.v4b.scr >& log.1 < /dev/null &</pre>

VTEC over BORJ from GIM UQRG

Year/Month/Day/DOY: 2017/06/12/163-2017/06/14/165

NAMA-TMP1 is a similar baseline to BORJ-IJMU but now at low latitude (Saudi Arabia)

VTEC over NAMA from GIM UQRG

Year/Month/Day/DOY: 2017/06/12/163-2017/06/14/165

RGAO-VALP is a similar baseline to BORJ-IJMU but now at mid-low latitude in South Hemisphere (Argentina – Chile border)

VTEC over VALP from GIM UQRG

Year/Month/Day/DOY: 2017/06/12/163-2017/06/14/165

Two case studies to work with:

(a) Total solar eclipse during 21-Aug-2017 in NorthAmerica

(b) Geomagnetic storm during 05-Nov-2023

First case to study: Solar Eclipse 21 August 2017

Rec. quin elev. >= 0° during Year/Month/Day/DOY: 2017/08/20/232-2017/08/22/234

Vertical Total Electron Content (VTEC) / TECUs

Second case to study: Geomagnetic storm during 5 Nov 2023

GEC-Kp 2023

Zoom of GEC and Kp time evolution

GEC-Kp 2023

t

 $\mathbf{\Lambda}$

Both GEC and Kp spectra becomes excited within the storm

Such GEC and Kp spectrum correlation is not new:

Communication

The Spectrum of Global Electron Content: A New Potential Indicator of Space Weather Activity

Josep Maria Aroca-Farrerons¹, Manuel Hernández-Pajares^{1,2,*}, Haixia Lyu^{1,3,4}, David Roma-Dollase^{2,5}, Raul Orus-Perez⁶, Alberto García-Rigo^{1,2}, Victoria Graffigna^{1,2}, Germán Olivares-Pulido¹, Enric Monte-Moreno⁷, Heng Yang^{1,7,8} and Qi Liu^{1,9}

- ¹ UPC-IonSAT, 08034 Barcelona, Spain; josep.m.aroca@upc.edu (J.M.A.-F.); hxlyu@whu.edu.cn (H.L.); alberto.garcia.rigo@upc.edu (A.G.-R.); victoria.graffigna@upc.edu (V.G.); german.olivares@upc.edu (G.O.-P.); h.yang@yznu.edu.cn (H.Y.); qi.liu@henu.edu.cn (Q.L.)
- ² IEEC, 08034 Barcelona, Spain; roma@ieec.cat
- ³ GNSS Research Center, Wuhan University, Wuhan 430079, China
- ⁴ Department of Physics and Mathematics, University of Alcalá, 28801 Alcalá de Henares, Spain
- ⁵ Instituto de Ciencias del Espacio (ICE-CSIC, IEEC), Campus Universitat d'Autonoma de Barcelona, Carrer de Can Magrans, 08193 Cerdanyola del Vallès, Spain
- ⁶ ESA, ESTEC, 2201 AZ Noordwijk, The Netherlands; raul.orus.perez@esa.int
- ⁷ UPC-TALP, 08034 Barcelona, Spain; enric.monte@upc.edu
- ⁸ School of Electronic Information and Engineering, Yangtze Normal University, Chongqing 408100, China
- ⁹ College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
- * Correspondence: manuel.hernandez@upc.edu

Citation: Aroca-Farrerons, J.M.; Hernández-Pajares, M.; Lyu, H.; Roma-Dollase, D.; Orus-Perez, R.; García-Rigo, A.; Graffigna, V.; Olivares-Pulido, G.; Monte-Moreno, E.; Yang, H.; et al. The Spectrum of Global Electron Content: A New Potential Indicator of Space Weather Activity. *Sensors* 2024, 24, 393. https://doi.org/10.3390/s24020393 **Abstract:** The time evolution of the total number of free electrons in the Earth's ionosphere, i.e., the Global Electron Content (GEC), during more than two solar cycles is analyzed in this work. The GEC time series has been extracted from the Global Ionospheric Maps (GIMs) of Vertical Total Electron Content (VTEC) estimated by UPC-IonSAT with TOMION-v1 software from global GPS measurements since the end of 1996. A dual-layer voxel-based tomographic model solved with a forward Kalman scalar filter, from dual-frequency carrier GPS data only, provides the so-called UQRG GIM after VTEC kriging interpolation, with a resolution of 15 min in time, 5° in longitude and 2.5° in latitude. UQRG is one of the best behaving GIMs in the International GNSS Service (IGS).In this context, the potential application of the GEC spectrum evolution as a potential space weather index is discussed and demonstrated.

Keywords: global electron content; space weather index; global navigation satellite systems

http://cabrera.upc.es/MoNEWIC/2023/

Ionospheric Storm Scale GIM (IsUG) for given day

2023-11-05 (doy: 309) 00:00:00

Ionospheric Storm Scale GIM (IsUG) for next day

2023-11-06 (doy: 310) 00:00:00

Second question to answer: Can we see corrresponding GIM VTEC time evolutions for different locations?

Part 1- Visual introduction to GNSS lonosphere

Part 2- Access to UPC-IonSAT Global Ionospheric Maps PITHIA-NRF registrations (AKA global VTEC maps every 15 minutes since end of 1996, i.e. ~1 million global VTEC maps & 5x10^9 VTECs computed so far)

Part 3- New applications of GIMs: gradient VTEC GIMs and lonospheric Storm Scale GIMs

Part 4- Very basic introduction to Linux and to ionsat-tool "gim2vtec*.scr"

Part 5- Two case studies to work with: (a) Total solar eclipse during 21-Aug-2017 in NorthAmerica (b) Geomagnetic storm during 05-Nov-2023

More details in GIM WG with the study with gim2vtec*scr IonSAT-tool of 2017 Solar eclipse & recent geomag. storm!

THANK YOU!!

4. References

- Hernandez-Pajares, M., Juan, J. M., & Sanz, J. (1997). Neural network modeling of the ionospheric electron content at global scale using GPS data. Radio Science, 32(3), 1081-1089.
- Hernández-Pajares, M., Juan, J. M., & Sanz, J. (1999). New approaches in global ionospheric determination using ground GPS data. Journal of Atmospheric and Solar-Terrestrial Physics, 61(16), 1237-1247.
- Hernández-Pajares, M., García-Rigo, A., Juan, J. M., Sanz, J., Monte, E., & Aragón-Àngel, A. (2012). GNSS measurement
 of EUV photons flux rate during strong and mid solar flares. Space Weather, 10(12).
- Hernández-Pajares, M., Juan, J. M., Sanz, J., Orus, R., Garcia-Rigo, A., Feltens, J., ... & Krankowski, A. (2009). The IGS VTEC maps: a reliable source of ionospheric information since 1998. Journal of Geodesy, 83(3), 263-275.
- Hernández-Pajares, M., Roma-Dollase, D., Krankowski, A., García-Rigo, A., & Orús-Pérez, R. (2017). Methodology and consistency of slant and vertical assessments for ionospheric electron content models. Journal of Geodesy, 91(12), 1405-1414.
- Hernández-Pajares, M., Lyu, H., Aragón-Àngel, À., Monte-Moreno, E., Liu, J., An, J., & Jiang, H. (2020). Polar Electron Content From GPS Data-Based Global Ionospheric Maps: Assessment, Case Studies, and Climatology. Journal of Geophysical Research: Space Physics, 125(6), e2019JA027677.
- Hernández-Pajares, M., Lyu, H., Garcia-Fernandez, M., & Orus-Perez, R. (2020). A new way of improving global ionospheric maps by ionospheric tomography: consistent combination of multi-GNSS and multi-space geodetic dualfrequency measurements gathered from vessel-, LEO-and ground-based receivers. Journal of Geodesy, 94(8), 1-16.
- Jakowski, N., & Hoque, M. M. (2019). Estimation of spatial gradients and temporal variations of the total electron content using ground-based GNSS measurements. Space Weather, 17, 339–356. https://doi.org/10.1029/2018SW002119.

4. References

- Kotov, D. V., Richards, P. G., Truhlík, V., Bogomaz, O. V., Shulha, M. O., Maruyama, N., ... & Chepurnyy, Y. M. (2018). Coincident observations by the Kharkiv IS radar and ionosonde, DMSP and Arase (ERG) satellites, and FLIP model simulations: Implications for the NRLMSISE-00 hydrogen density, plasmasphere, and ionosphere. Geophysical Research Letters, 45(16), 8062-8071.
- Kotov, D. V., Richards, P. G., Truhlík, V., Maruyama, N., Fedrizzi, M., Shulha, M. O., ... & Domnin, I. F. (2019). Weak magnetic storms can modulate ionosphere-plasmasphere interaction significantly: Mechanisms and manifestations at mid-latitudes. Journal of Geophysical Research: Space Physics, 124(11), 9665-9675.
- Liu, Q., Hernández-Pajares, M., Lyu, H., Nishioka, M., Yang, H., Monte-Moreno, E., ... & Orús-Pérez, R. (2021). Ionospheric Storm Scale Index Based on High Time Resolution UPC-IonSAT Global Ionospheric Maps (IsUG). Space Weather, 19(11), e2021SW002853.
- Liu, Q., Hernández-Pajares, M., Yang, H., Monte-Moreno, E., García-Rigo, A., Lyu, H., ... & Orús-Pérez, R. (2022). A New Way of Estimating the Spatial and Temporal Components of the Vertical Total Electron Content Gradient Based on UPC-IonSAT Global Ionosphere Maps. Space Weather, 20(2), e2021SW002926.
- Nishioka, M., T. Tsugawa, H. Jin, and M. Ishii (2017), A new ionospheric storm scale based on TEC and f o F 2 statistics, Space Weather, 15, 228–239, doi:10.1002/2016SW001536.
- Orús R., Hernández-Pajares, M., Juan, J. M., & Sanz, J. (2005). Improvement of global ionospheric VTEC maps by using kriging interpolation technique. Journal of atmospheric and solar-terrestrial physics, 67(16), 1598-1609.
- Roma-Dollase, D., Hernández-Pajares, M., Krankowski, A., Kotulak, K., Ghoddousi-Fard, R., Yuan, Y., ... & Gómez-Cama, J. M. (2018). Consistency of seven different GNSS global ionospheric mapping techniques during one solar cycle. Journal of Geodesy, 92(6), 691-706.

