lonospheric irregularities & scintillations

Luca Spogli

luca.spogli@ingv.it

2nd PITHIA-NRF Training School supported by T-FORS project February 5 - 9, 2024, Leuven

Ground-based GNSS receivers

Probing the ionosphere with GNSS*

GNSS signals pass through the entire ionosphere

Source	Effect	
Ionospheric effects	± 5 m	
Ephemeris errors	± 2.5 m	
Satellite clock errors	± 2 m	
Multipath distortion	± 1 m	
Tropospheric effects	± 0.5 m	
Numerical errors	± 1 m	

Global Navigation Satellite System (GNSS) is the standard generic term for satellite navigation systems that provide autonomous geo-spatial positioning with global coverage. This term includes e.g. the GPS, GLONASS, Galileo, Beidou and other regional systems.

*Global Navigation Satellite System

Code and Carrier phase measurements equations

The ionosphere will introduce a delay of the modulation (the code measurement will be larger than in vacuum), and an advance of the carrier phase (the carrier phase measurement will be smaller than in vacuum).

Linear Combination of GNSS Measurements

Estimation of Total Electron Content (TEC)

Ionospheric Scintillation

Categories of scintillation

Categories of scintillation

Ionospheric Scintillation

Ionospheric Scintillation

Ionospheric Irregularities

Irregularities in a nutshell

Anomalies (i.e., ± gradients) w.r.t. a background, smooth, ambient, ideal ionosphere

Irregularities* in a nutshell

Irregularities* in a nuthsell

Kelvin-Helmotz Instability

Small-scales embedded in EPBs

Growth/Decay of instabilities:

K-H and GDI at high-lat (very rare) R-T at low-latitudes (very common)

«few hundreds of meters»

Irregularities* in a nutshell

Boundaries and edges of:	Auroral oval precipitation Polar cap patches Auroral blobs Storm-enhanced densities	Mostly	y storm-time phen	omena
	Equatorial plasma bubbles	Modulated by storm-time phenomena (electrodyamics)		
	«A» problem			
100 m	1 km	10 km	100 km	1000 km
Small scale	Medium scale		Large scale	
(Tresher's scale)			*from a	GNSS perspective

Irregularities* in a nuthsell

Irregularities in a nuthsell

HORIZONTAL SCALE 1 MAGNETIC FIELD (m) SCALE (km) 1000 100 10 100 10 0.1 0.01 Wandering of Normal to Ionosphere \sim Gyroradius **IRREGULARITIES** Multiple Normals to Ionosphere roradius Aggregate Phase. of TIDs Electron Scintillation 3 (Gravitationally Anisotropic) ОF Amplitude Scintillation Plasma Turbulence DENSITY (Magnetically Anisotropic) Blurs on Ionograms (SPECTRAL Strong Back Scattering and Trans-Eorth Scale equatorial. propagation Piasma Waves ∖at .VHF ٥f mospheric Height (Magnetically LOG Anisotropic) Radius đ i0² 105 IQ4 10³ 10² ٥Ō 10 10 WAVE NUMBER (m⁻¹)

Spectra of ionosphere irregularities and their intensity as function of wave number over spatial scale sizes covering from the electron gyro-radius to the radius of the Earth (Booker, 1956).

What causes phase and amplitude fluctuations in the GNSS signals?

Scale size range: full ionospheric spectrum Affects: phase Physical mechanism: phase mixing

Scale size range: up to Fresnel's scale Affects: amplitude, phase Physical mechanism: decorrelation, interference What causes phase and amplitude fluctuations in the GNSS signals?

Scale size range: up to Fresnel's scale

The first Fresnel zone is an elliptical region in free space which radio waves travel directly from transmission to reception without significant alterations

```
Diffraction occurs when F_{irr} \leq F_r
```


Ionospheric Scintillation

GNSS scintillation: how to measure

Ionospheric Scintillation Monitor Receivers

Features:

- High-sampling frequency (50/100 Hz)
- Low-noise oscillators
- Stable clock
- Firmware providing scintillation indices (1-min resolution)
- Output in (quasi) real-time

- Amplitude scintillation, S4 index:

$$S_4 = \sqrt{\frac{(\langle I^2 \rangle - \langle I \rangle^2)}{\langle I \rangle^2}}$$

I = Signal Intensity

square-root of the normalized variance of signal intensity over a given interval of time.

- Phase scintillation, σ_ϕ (SigmaPhi) index:

 $\sigma_{\phi} = \sqrt{\langle \phi^2 \rangle - \langle \phi \rangle^2}$ standard deviation of detrended phase measurements.

Loss of lock

$$S_4^2 = \left(\left\langle I^2 \right\rangle - \left\langle I \right\rangle^2 \right) / \left\langle I \right\rangle^2$$

Ampl.

$$\sigma_{\varphi}^{2} = \left< \varphi^{2} \right> - \left< \varphi \right>^{2}$$
 Phase

Home Scientific Metadata Space Physics Ontology

Home > All Scientific Metadata > Data Collection-related Metadata > Data Collections

Data Collections

Top-level definition of a collection of the model or measurement data, with CollectionResults pointing to its URL(s) for accessing the data. Note: data collections do not include begin and end times, please see Catalogue.

On This Page:

- Activity Indicators
- Sensor Measurements
- <u>Computational Models</u>
- <u>Mixed</u>
- <u>Other</u>

Mixed

eSWua IONOWORD tool: Nowcasting global TEC maps

eSWua IONOWORLD tool: Long-term forecasting global TEC maps

eSWua: Scintillation Indices and Total Electron Content (TEC) database

GIM: Global Ionosphere Maps

IRTAM 3D global real-time assimilative model of ionospheric electron density

RayTRIX-CQP: Oblique ionogram synthesizer with E, F1, F2 layer echo traces and MUF

https://esc.pithia.eu/

eswua.ingv.it

NEWS: hya) owned by the Kenya Space Agency (KSA) is now available in the eSWUa system; instrument code: NAIOP

IOP 19/09/2023 - New GNSS scintillation receiver installed at the Department of Space Science & Enginee

eswua.ingv.it

INGV IONOSPHERIC MONITORING NETWORK

eswua.ingv.it

Impact on tracking

Occurrence of scintillation is strongly linked with Loss of Lock probability

 $Prob \ lol_{scint}^{highlat}(\%) = \left[0.02955. \exp\left(3.26.\sigma_{\varphi}\right)\right].100$ $Prob \ lol_{scint}^{lowlat}(\%) = \left[0.00797. \exp\left(3.36.S4\right)\right].100$

X. Luo et al. | Advances in Space Research 60 (2017) 1039-1053

1045

Fig. 5. Hourly occurrence probability of scintillation events and cycle-slips for GPS, GLONASS, and BDS satellites data collected at Sha Tin station from 6 October 2015 to 31 December 2016.

Impact on positioning

Fig. 8. Data for 2015-03-17 and 2015-03-18. (a) Phase scintillation index for all GPS and GLONASS satellites, from the scintillation receiver in Vega. (b) ROTI@Rec for the receiver VEGS. (c) Position errors for Steinkjer (RTK) and Vega (PPP) (receivers MSTE & VEGS). Blue line is RTK, red line is PPP.

Distribution of positioning errors in the East, North and Up directions

Luo et al. (2018). Investigation of ionospheric scintillation effects on BDS precise point positioning at low-latitude regions. GPS solutions, 22(3), 1-12.

Occurrence of scintillation decreases GNSS performance

What causes phase and amplitude fluctuations in the GNSS signals?

Scale size range: full ionospheric spectrum
Affects: phase
Physical mechanism: phase mixing
Effect: deterministic fluctuations
Mitigation: IFLC (1st ionospheric order)
Positioning issues: Cycle Slips, Losses and Lock, Phase Noise, 2nd order ionospheric effect (fraction of cm), etc.

Scale size range: up to Fresnel's scale
Affects: amplitude, phase
Physical mechanism: decorrelation, interference
Effect: stochastic fluctuations
Mitigation: e.g., Conker et al., Aquino et al., etc., de-weighting methods.
Positioning issues: stochastic nature is challenging, TEC cannot be calculated

Amplitude scintillation:

1 mechanism: diffraction triggered by small-scale irregularities

Stochastic effect

Stochastic effects are the most threating for GNSS positioning

Phase "fluctuations":

2 mechanisms: -<u>diffraction</u> (small-scale irregularities) -refraction (all scale range and scaling with 1/f)

Stochastic and deterministic effects

Phase "fluctuations":

2 mechanisms: -<u>diffraction</u> (small-scale irregularities) -refraction (all scale range and scaling with 1/f)

Stochastic and deterministic effects

If cutoff frequency is "wrong" (ususally fixed at 0.1 Hz), detrending is wrong, σ_{Φ} value includes mainly phase fluctuations due to refraction, i.e., mostly deterministic effects. **Overestimated** σ_{Φ}

Scintillation on L1?

Scintillation on L1?

Scintillation on L2?

NO! Ionosphere-Free Linear Combination says NO!

YES! Ionosphere-Free Linear Combination doesn't account for all fluctuations

If properly detrended, SigmaPhi has almost the same information content of S4

Ghobadi et al. (2020). *GPS Solutions*

Spogli et al. (2021). *IEEE Geoscience and Remote Sensing Letters*.

This is an issue for high-latitude only, where plasma convection is way larger

IEEE Geoscience and Remote Sensing Letters.

0.1 Hz cutoff is not that bad at low latitudes...

Spogli et al. (2021). IEEE Geoscience and Remote Sensing Letters.

Wang et al. (2018) Journal of Geophysical Research: Space Physics

🗱 ISTITUTO NAZIONALE DI GEOFISICA E VULCANOLOGI

How to mitigate?

Cutting the elevation angle (typically 30°) Sidereal rejection (every day, 4 minutes time advance)

Radio Frequency Interference

Artificial RFI reported in Lampedusa (Sicily, Italy) island

Pica et al. (2023) IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

Mitigation is not trivial!

What can support the identification of the scale sizes?

- Rate of TEC index, ROTI

 $ROT = \frac{\Delta TEC}{\Delta t}, \text{ e.g. 5 minutes}$ $ROTI = \sqrt{\langle ROT^2 \rangle - \langle ROT^2 \rangle}$

ROTI can provide valuable information about **phase fluctuations due to irregularities at about few to few tens km scale** It depends on the Nyquist frequency of ROT sampling, usually (2*30s)⁻¹

Cherniak et al., 2018

ROTI is not Scintillation!

But:

- it is very useful (measures phase fluctuations)
- It can be (not easily) rescaled to (weak) scintillation (Carrano et al., 2019)

Frequency of the GNSS scintillation

GNSS signal fading due to scintillation

Among the most known pictures of climatological modelling of scintillation

INGV IONOSPHERIC MONITORING NETWORK

Kintner at al., 2009

Among the most known pictures of climatological modelling of scintillation

Scintillation climatology at low latitudes

Highlights from Climatology: Solar Cycle dependence of EPB-related scintillation

Data available at http://lisn.igp.gob.pe/

Highlights from Climatology: LT and season

Occurrence maximizes between September and April

Residual multipath effects (streaks in the occurrence) \rightarrow elevation cutoff at 25° in not suitable

Highlights from Climatology: LT and season

Highlights from Climatology: LT and season

Ground-based GNSS for scintillation CIGALA/CALIBRA network

Highlights from Climatology: geographical distribution

CIGALA/CALIBRA network

ERICA - EquatoRial Ionosphere Characterization in Asia

esa

European Space Agency

1.2

0.8

0.6

0.4

0.2

0

E

S4 Occurrence > 0.25 (%)

Highlights from Climatology: Scintillation inhibition/enhancement

GPS L1 - Novatel GSV4004B – Station6 - Period March 2015 **Quiet days Disturbed days** 25 **GNSS** - Scintillation Phu Thuy 20 20 15 15 Pontianal Bandung Öccurrence (%) Occurrence (%) Latitude (°N) Latitude (°N) Kupang Google earth -10 -10 15 20 15 20 Local Time Local Time · e esa

S4 occurrence > 0.1

ERICA EquatoRial Ionosphere Characterization in Asia

Spogli et al. (2016). Journal of Geophysical Research: Space Physics, 121(12).

ISTITUTO NAZIONALE DI GEOFISICA E VULCANOLOGI

Highlights from Climatology: Scintillation inhibition/enhancement

In case of a geoffective Space Weather event, the low latitude electrodynamics is altered

Equatorial zonal electric field **E**, eastward in dayside and westward in nightside, is modified and the mechanisms ruling out the formation of EIA and EPB is altered.

Prompt Penetration Electric Fields (PPEF)

Penetration of Electric Field from Interplanetary Electric Field. Prompt effect, perturbations in the zonal electric field for shorter durations of <u>about 30 min to 2 h</u> *Involved parameter/index: IMF-Bz, IEF-Ey*

Disturbance Dynamo Electric Fields (DDEF)

Cross-equatorial winds due to thermospheric changes induced by heating at high latitude (often with LSTID). Delayed effect, non-uniform time delays at different latitudes and lasts for <u>few hours to more than a day</u>

Involved parameter/index: AE, Joule heating

Scintillation climatology at high-latitude

Climatology over (more than) 1 solar-cycle!

The Ny-Ålesund ionospheric station is the perfect site to study scintillations in the auroral/cusp/cap regions

De Franceschi et al., Sci.Rep, 2019

Bz =-10 nT By=00 nT F10.7 = 120

Kelvin-Helmotz Instability

Occurrence according to different space weather conditions.

 $\sigma_{\Phi} \ge 0.25 \text{ rad}$

Comparing climatology of amplitude and phase scintillation occurrence to learn about irregularities scale size and dynamics

 $v_{\text{cut-off}} = 0$

1 Hz

TITUTO NAZIONALE DI GEOFISICA E VULCANOLOGI

What about mid-latitudes?

ISMR in Lampedusa and Nicosia climatologically see EPBs

PPEF and DDEF can cause the spill-over of very intense equatorial plasma bubbles

Takehome messages

- Irregularities in the ionosphere cause (on GNSS signals)
 - (i) phase fluctuations and
 - (ii) phase/amplitude scintillation
- These cause tracking (phase fluctuation) and positioning (scintillation) issues
- S4 and σ_{Φ} are routinely provided on a 1-minute basis by Ionospheric Scintillation Monitor Receivers
- They must be used wisely
- High- and low-latitude ionosphere are featured by scintillation and phase fluctuations
 - High-lat: forcing from geospace. Auroral oval, polar cap patches, auroral blobs,
 - Low-lat: EPB are quasi-regular phenomenon, modulate by geospace forcing and neutral dynamics
 - Mid-lat: spill-over from high- and low-latitudes SED (not show)
- Climatological modelling reveals the overall features of GNSS scintillation

Thanks for your attention!

luca.spogli@ingv.it

Acknowledgments: Giorgiana De Franceschi, Lucilla Alfonsi, Vincenzo Romano, Claudio Cesaroni, Carlo Marcocci, Emanuele Pica Ionospheric irregularities & scintillations

2nd PITHIA-NRF Training School supported by T-FORS project February 5 - 9, 2024, Leuven

