

Ionospheric Data Assimilation Models

Real-Time IRI Task Force Activity

Ivan Galkin^(1,2) and IRTAM Science Team

(1) Borealis Global Designs, Varna, Bulgaria(2) Space Science Laboratory, UMass Lowell, USA

2nd PITHIA-NRF Training School with T-FORS support

KU Leuven, Belgium 5 - 9 February 2024

Acknowledgements

• IGS Team (GNSS)

Belgiun

KU Leuven

5-9 Feb, 2024

- Olsztyn UWM
 - Adam Froń
 - Andrzej Krankowski
 - Kacper Kotulak
 - Paweł Flisek
- UTC/Barcelona
 - Manuel Hernández-Pajares
 - David Roma Dollase
 - Alberto García-Rigo
- AIRI/Beijing
 - Zishen Li
 - Ningbo Wang

- GIRO Science Team
 - Lowell GIRO Data Center
 - Artem Vesnin
 - ICTP/Trieste
 - Bruno Nava
 - INPE/São Paulo
 - Inez Batista
- GIRO Engineering Support
 - Digsonde Crew
 - Ryan Hamel
 - David Kitrosser
- PITHIA-NRF Team
 - e-Science Center (ESC)
 - Metadata Definition Group

Outline

- Background:
 - Assimilation concept
 - NECTAR technique for Real-Time IRI
 - Driving data-driven model with data
 - IRTAM and GAMBIT
- Higher data products from GAMBIT system
 - Data fusion of near-real-time IGS and GIRO maps
 - Computation of MUF(3000) weather maps
 - Study of attenuation trajectories for NECTAR spatial prediction
- Open problems

Assimilation Concept: 2D map example

Global background model of hmF2

hmF2 (Brunini et al.) kn

Ionosonde Network Real-Time hmF2

AND NOW THINK 3D

Global hmF2 Weather Model

Belgium KU Leuven 5-9 Feb, 2024 SC

Kalman Filter approach

Belgium KU Leuven 2024 5-9 Feb, SC

Kalman Filter approach

NECTAR approach

IRTAM = RI-based Real-Time Assimilative Model

BASED ON NECTAR ASSIMILATION ALGORITHM

The vertical profile of plasma density:

16 "anchor" parameters

NECTAR

OREALIS

Belgium

KU Leuven

5-9 Feb, 2024

Profile shape is important! assimilate B0 and B1

Modeling geosystems using data fragments

KU L

Gray-box model: "Screen" points

96 ionosondes averaged to represent typical latitudinal variation

Screen points added with "anticipated" ionosphere

Demagnetize ionosphere before training

Aligned to 12 LT

Belgium

KU Leuven

5-9 Feb, 2024

RAINING SC

REALIS

Aligned to 12 LT Magnetic field removed

Real-Time IRI Task Force

- Founded in 2009
- Concept: periodically reprocess IRI climate specs of N_e to match available observations
- Two primary objectives:
 - Capture the weather timeline of global ionospheric conditions
 - Build animated *anomaly* maps of deviations from quiet-time conditions
 - Provide weather monitoring capability to applications
- Two aspects:
 - Driving a data-driven empirical model with new data = Assimilative IRI
 - Low-latency sensor data streams = Real-Time IRI
- IRTAM = IRI-based Real-Time Assimilative Model
 - (One example of the Task Force activity)

Single station chart of IRI, ionosonde, and IRTAM One IRTAM Computation = Red Line, matches 24 hours of data

Available online at https://giro.uml.edu

LUALUALEI LL721

Belgium

KU Leuven

5-9 Feb, 2024

New to IRTAM: working on attenuation ellipses

- Underlying principle: IRTAM works with diurnal harmonics
- Suppose a GIRO ionosonde detects a significant 12-hour deviation ▲
- Question: how far from the site this correction shall extend?
 - How about 4-hour harmonic?

Belgiun

KU Leuven

5-9 Feb, 2024

Principles of IRTAM: NECTAR Technique

- NECTAR is a 24-hour 4DDA algorithm:
 - At each sensor site k, use 24-hour history of *deviations* from IRI, Δ_k
 - Expand Δ_k into *j* diurnal harmonics
 - Use the same 6th order Fourier series as in IRI
 - Interpolate-Extrapolate Δ_{kj} to global 2D, individually for each j
 - Expand to Jones-Gallett spatial basis *m*
 - Add 998 resulting corrections Δ_{kjm} to 998 original IRI coefficients
 - Twist: Linear-trend term added to IRTAM's diurnal harmonics = total 1024 coeffs
- This is a GRAY BOX approach
 - IRI background is responsible for capturing underlying geophysics with solar seasonal, and geomagnetic field dependencies
 - IRTAM merely *adjusts* IRI background using Δ_{kjm}
 - IRTAM represents observations faithfully
 - IRTAM gradually returns to background over no-sensor regions

November 4, 2021 Storm, Kp ~ G3..G5

GIRO ionosondes only, IRTAM 3D assimilative model

MUF(3000) weather maps in IRTAM

First attempt at the capability

MUF is maximum usable frequency 3000 refers to a radio link of 3000 km ground distance

KU Leu

202

-9 Feb

MUF(3000) Anomaly Map by IRTAM 3D

🕈 Gambit eXolorer

Building MUF(3000) using GIRO

- The expected approach to assimilation:
 - Obtain MUF(3000) observations from GIRO location
 - Build MUF(3000) climate map using IRI
 - M(3000) and foF2 maps are available in IRI
 - Apply NECTAR assimilation algorithm to compute the weather map of MUF(3000)
- Currently implemented, simpler approach
 - Obtain weather maps of foF2 and hmF2 from IRTAM
 - Apply empirical formula for hmF2 in the reverse direction to obtain M(3000)
 - Compute MUF(3000) from M(3000)
- Building MUF(3000) maps from foF2 and hmF2 has its merits
 - Allows contributions from other sensors such as RO
- Todo: implement assimilation of GIRO measurements of MUF(3000)

Cooperation of IRTAM and GIM Communities

Prelude: Anomaly maps by IGS and GIRO networks

Belgiur

en

KU Leuv

5-9 Feb, 2024

Cooperation of GNSS and GIRO

OTHERS:

- 2D: use observed ΔvTEC to derive corrections to NmF2 over nocoverage areas
 - T. Gulyaeva et al.
 - A. Pignalberi et al.
- Assimilate GIRO and GNSS data simultaneously in a 3D model
 - 6000 vs 60 problem
 - GIRO input is insignificant
 - GPSII: weighted assimilation
 - Fridman et al., NWRA/HFGeo

THIS WORK:

• DATA FUSION PROJECT

- Combine NmF2 and vTEC measurements to reason about slab thickness τ

Belgium KU Leuven 5-9 Feb, 2024 S

Slab Thickness Climatology

GX.User 1.2A

2021.11.04 23:15:00 UT

NmF2: IRI foF2 model (climate) VTEC: IGS 30-day median VTEC

[Fron *et al.*, 2020]

Map: TAU-average km

50 362 575 788 1000

REALIS

Slab Thickness Anomaly Map

2021 Nov 04 storm example

Tau-anomaly vs MUF anomaly (storm-time) ΔMUF $\Delta \tau$ IRTAM v0.3A : UML IRTAM v0.3A : UML 2021.11.04 23:15:00 UT 2021.11.04 23:15:00 UT Map: Delta-TAU % Map: Delta-MUF3000 % .75 -3875-5050-25 25 ORFAILS

nd PITHIA-NRF TRAINING SCHOOL • 5-9 Feb, 2024

Belgium

KU Leuven,

IRTAM Open Problems

- Need to complete fusion with near-real-time global VTEC maps (GIMs)
 - Work with IGS Coordination Center at UWM Olztyn
 - ELO (Elastic Linear Optimizatioin): capability
 - Assimilate sensor data from moving platforms such as COSMIC/SPIRE
 - 4DDA technique to analyze 24-hour history of RO data
 - Similar Model Morphing approach as in NECTAR
- $h_{\rm m}$ F2 dilemma in IRTAM: did not fare well in comparisons to COSMIC $h_{\rm m}$ F2 data
 - Possibly related to the IRTAM using IRI-2000 background climate specification of h_m F2
 - Upgrade IRTAM to Shubin *et al.* background model of h_m F2 from IRI 2020
 - Rerun comparisons to COSMIC/RO $h_{\rm m}$ F2
 - Optimize attenuation trajectories (AUROC investigation)
- Improve MUF(3000) weather mapping algorithm by involving ionosonde data
- Increase expansion orders in IRTAM?
 - Capture finer detail
 - Improve "underestimation" problem due to smoothing artifacts
- Assimilate **VTEC** in **IRTAM**?
- Ingest WDC/SPIDR ionosonde archives into DIDBase, rerun IRTAM?

hmF2 in IRTAM: improve layer liftup representation

